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Abstract. We introduce a notion of Aubry set for weakly coupled systems of
Hamilton–Jacobi equations on the torus and characterize it as the region where the
obstruction to the existence of globally strict critical subsolutions concentrates.
As in the case of a single equation, we prove the existence of critical subsolutions
which are strict and smooth outside the Aubry set. This allows us to derive
in a simple way a comparison result among critical sub and supersolutions with
respect to their boundary data on the Aubry set, showing in particular that the
latter is a uniqueness set for the critical system. We also highlight some rigidity
phenomena taking place on the Aubry set.

Introduction

In this paper we will consider a weakly coupled system of Hamilton–Jacobi equa-
tions of the form

Hi(x,Dui) +
m∑
j=1

bij(x)uj(x) = a in TN for every i ∈ {1, . . . ,m}, (1)

where a is a real constant, H1, . . . , Hm are continuous Hamiltonians defined on
the cotangent bundle of TN , convex and coercive in the momentum variable, and
B(x) :=

(
bij(x)

)
is a continuous m×m matrix satisfying

bij(x) 6 0 for j 6= i,
m∑
j=1

bij(x) = 0 for every x ∈ TN and i ∈ {1, . . . ,m}.

Such weakly coupled systems arise naturally in optimal control problems asso-
ciated with randomly switching costs, where the switching is governed by specific
Markov chains, see [22, 36]. In the PDE literature, they have been studied as a
particular instance of monotone systems, see [14, 25, 26]. More recently, they have
been considered in connection with homogenization problems [5, 21, 30] and for
the long–time behavior of the associated evolutionary system [6, 28, 29, 32]. These
works are a generalization of results established in the case of a single equation, see
[1, 3, 11, 17, 24, 27, 31, 33, 34, 35].

Note that we must assume some further condition on the coupling matrix to solve
the system (1) with the same constant a as right–hand side: in the extreme case
where B(x) ≡ 0, each equation Hi(x,Dui) = ai can be solved for a unique ai, and
usually the ai are different. We will therefore assume that B is irreducible, meaning,
roughly speaking, that the coupling is non–trivial and the system cannot be split
into independent subsystems, see Definition 1.1–(ii). Under this assumption, it has
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been established in [6, 28] that there is a unique a for which the system (1) can be
solved. Such a value is denoted by c and termed critical in the sequel. These results
were proved using the so called ergodic approximation in the spirit of [27], or the
new adjoint method introduced by Evans [15].

Solutions of (1) are usually not unique, even up to addition of a common constant
to all the ui. Except for the work [6], which addresses the case of Hamiltonians of
particular form, little attention has been devoted to the issue of non–uniqueness
of solutions for systems. In the case of a single equation, the study of these non-
uniqueness phenomena is part of weak KAM theory, see for example [18]. Inspired
by these results, we have addressed these questions and we have drawn a weak KAM
analog for weakly coupled systems of the form (1). The main contribution of this
paper is to define the Aubry set for systems and to establish its main properties.
Due to a lack of suitable variational formulae for the solutions of the system, we
have relied more on the PDE methods for weak KAM theory.

Our study is based on a different definition of the critical value c, given as the
minimal a ∈ R for which the corresponding weakly coupled system admits viscosity
subsolutions. This characterization was already known, see for instance [28], but we
provide here a new proof to the existence of solutions at the critical level, based on
a fixed point argument in the spirit of [16, 18].

Next we show that the obstruction to the existence of globally strict subsolutions
of the corresponding critical system is not spread indistinctly on the torus, but
concentrates on a closed set A, that we call Aubry set in analogy to the case of a
single equation. We prove existence of critical subsolutions smooth and strict outside
the Aubry set and we show that they are dense, with respect to the topology of
uniform convergence, in the family of critical subsolutions. This allows us to derive
in a simple way a comparison result among critical sub and supersolutions satisfying
suitable “boundary” conditions on A, see Theorem 5.5. In particular, we infer that
the Aubry set is a uniqueness set for the critical system, i.e. two critical solutions
that coincide on A do coincide on the whole torus. We furthermore show that the
trace of any critical subsolution on A can be extended on the whole torus in such a
way that the output is a critical solution, see Theorem 5.7.

Our study also highlights some rigidity phenomena taking place on the Aubry set.
First, we show that any pair of critical subsolutions differ, at each point y of A, by
a vector of the form k (1, 1, . . . , 1), see Proposition 5.1. This accounts for the kind of
symmetries already observed in [6] for the particular class of Hamiltonians therein
considered, see Section 6.1 for more details. A second rigidity phenomenon that we
point out is when the Hamiltonians are additionally assumed strictly convex in the
momentum: in this case we prove that, at any point of the Aubry set, the intersection
of the reachable gradients of all the critical subsolutions is always nonempty, see
Proposition 4.4. This can be regarded as a weak version of a result holding in the
scalar case, where it is known that, under suitable regularity assumptions on the
Hamiltonian, the critical subsolutions are all differentiable on the Aubry set and
have the same gradient, see [18, 19, 20].

This paper is organized as follows. In Section 1 we fix the notations and assump-
tions, and we give a brief overview of existing results on weakly coupled systems.
Section 2 is devoted to the definition of the critical value and to the study of its
main properties. In Section 3 we give the definition of Aubry set and explore its
properties. The first part of Section 4 is devoted to the regularization of subsolutions
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outside of the Aubry set, while in the second part we prove a rigidity phenomenon
enjoyed by reachable gradients of critical subsolutions on the Aubry set. Another
rigidity phenomenon is instead presented at the beginning of Section 5, where we
also prove the comparison principle. In Section 6 we illustrate our theory on some
examples. Appendix A contains the more technical proofs of Section 2.
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1. Preliminaries

1.1. Notations. Throughout the paper, we will denote by TN = RN/ZN the N–
dimensional flat torus, where N is an integer number. The scalar product in RN

will be denoted by 〈 · , · 〉, while the symbol | · | stands for the Euclidean norm. Note
that the latter induces a distance on TN , denoted by d(·, ·), defined as

d(x, y) := min
κ∈ZN

|x− y + κ| for every x, y ∈ TN .

We will denote by BR(x0) and BR the open balls in TN of radius R centered at x0
and 0, respectively.

With the symbols N and R+ we will refer to the sets of positive integer numbers
and nonnegative real numbers, respectively. We say that a property holds almost
everywhere (a.e. for short) in a subset E of TN if it holds up to a negligible subset
of E, i.e. a subset of zero N–dimensional Lebesgue measure.

We will denote by ‖g‖∞ the usual L∞–norm of g, where the latter is a measurable
real function defined on TN . We will write gn ⇒ g in TN to mean that the sequence
of functions (gn)n uniformly converges to g in TN , i.e. ‖gn−g‖∞ → 0. We will denote
by
(
C(TN )

)m
the Banach space of continuous functions u = (u1, . . . , um)T from TN

to Rm (where the upper–script symbol T stands for the transpose), endowed with
the norm

‖u− v‖∞ = max
16i6m

‖ui − vi‖∞, u,v ∈
(
C(TN )

)m
.

We will write un ⇒ u in TN to mean that ‖un−u‖∞ → 0. A function u ∈
(
C(TN )

)m
will be termed Lipschitz continuous if each of its components is κ–Lipschitz contin-
uous, for some κ > 0. Such a constant κ will be called a Lipschitz constant for u.
The space of all such functions will be denoted by

(
Lip(TN )

)m
.

We will denote by 1 = (1, · · · , 1)T the vector of Rm having all components equal
to 1. We consider the following partial relations between elements a,b ∈ Rm: a 6 b
(respectively, a < b) if ai 6 bi (resp., <) for every i ∈ {1, . . . ,m}. Given two
functions u,v : TN → Rm, we will write u 6 v in TN (respectively, <) to mean that
u(x) 6 v(x)

(
resp., u(x) < v(x)

)
for every x ∈ TN .
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1.2. Linear algebra. Here we briefly present some elementary linear algebraic re-
sults concerning coupling matrices.

Definition 1.1. Let B = (bij)i,j be a m×m–matrix.

(i) We say that B is a coupling matrix if it satisfies the following conditions:

bij 6 0 for j 6= i,

m∑
j=1

bij > 0 for any i ∈ {1, . . . ,m}. (C)

It is additionally termed degenerate if
m∑
j=1

bij = 0 for any i = 1, . . . ,m.

(ii) We say that B is irreducible if for every subset I ( {1, . . . ,m} there exist
i ∈ I and j 6∈ I such that bij 6= 0.

When a coupling matrix is irreducible, we can derive further information on the
sign of its diagonal elements:

Proposition 1.2. Let B = (bij)i,j be an irreducible m ×m coupling matrix. Then
bii > 0 for every i ∈ {1, . . . ,m}.

Proof. Indeed, if bii = 0 for some i ∈ {1, . . . ,m}, condition (C) would imply bij = 0
for every j ∈ {1, . . . ,m}, in contradiction with the fact that B is irreducible. �

The following proposition gives an obstruction to being in the image of a degen-
erate coupling matrix.

Proposition 1.3. Let B = (bij)i,j be a degenerate m × m coupling matrix. Let
a = Bv for some v ∈ Rm. Then mini ai 6 0 6 maxi ai. Moreover, if B is
irreducible and mini ai > 0 (resp. maxi ai 6 0), then v = λ1 for some λ ∈ R and
a = 0.

Proof. Let v = (v1, . . . , vm)T be such that Bv = a and set I := {k ∈ {1, . . . ,m} :
vk = mini vi }. For k ∈ I we have

ak =
m∑
j=1

bkjvj 6
m∑
j=1

bkjvk = 0, (1.1)

that is ak 6 0 for every k ∈ I. In particular, we get mini ai 6 0.
Let us additionally assume B irreducible and mini ai > 0. We claim that I =

{1, . . . ,m}. Indeed, if this where not the case, there would exist k ∈ I and j 6∈ I such
that bkj 6= 0. From (1.1) and the hypothesis we get 0 6 mini ai 6 ak 6 0, i.e. ak = 0
and all the inequalities in (1.1) must be equalities. In particular bkjvj = bkjvk,
yielding vj = vk = mini vi, i.e. j ∈ I, a contradiction. Hence v = v11 and
a = Bv = 0 by the degenerate character of B. The analogous results with max in
place of min follow at once by replacing a and v with −a and −v. �

As a straightforward consequence of Proposition 1.3, we derive the following in-
vertibility criterion:

Proposition 1.4. Let B = (bij)i,j be an m×m irreducible coupling matrix. Then

(i) Ker(B) ⊆ span{(1, . . . , 1)T } = R1;
(ii) Ker(B) = span{(1, . . . , 1)T } = R1 if and only if B is degenerate.
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In particular, B is invertible if and only if
m∑
j=1

bij > 0 for some i ∈ {1, . . . ,m}.

1.3. Weakly coupled systems. Throughout the paper, we will call convex Hamil-
tonian a function H satisfying the following set of assumptions:

(H1) H : TN × RN → R is continuous;

(H2) p 7→ H(x, p) is convex on RN for any x ∈ TN ;

(H3) min
x∈TN

H(x, p) → +∞ as |p| → +∞.

Property (H3) will be referred as coercivity of H in p. The Hamiltonian will be
termed strictly convex if it additionally satisfies the following stronger assumption:

(H2)′ p 7→ H(x, p) is strictly convex on RN for any x ∈ TN .

Moreover, we will denote by B(x) =
(
bij(x)

)
i,j

an m×m–matrix with continuous

coefficients bij(x) on TN . If not otherwise stated, the following hypotheses will be
always assumed:

(B1) B(x) is an irreducible coupling matrix for every x ∈ TN ;

(B2) B(x) is degenerate for every x ∈ TN .

Let H1(x, p), . . . , Hm(x, p) be convex Hamiltonians, i.e. functions satisfying con-
ditions (H1)–(H3). We are interested in weakly coupled systems of the form

Hi(x,Dui) +
(
B(x)u(x)

)
i
= ai in TN for every i ∈ {1, . . . ,m}, (1.2)

for some constant vector a = (a1, . . . , am)T , where u(x) =
(
u1(x), . . . , um(x)

)T
and(

B(x)u(x)
)
i
denotes the i–th component of the vector B(x)u(x), i.e.(

B(x)u(x)
)
i
=

m∑
j=1

bij(x)uj(x).

Remark 1.5. The weakly coupled system (1.2) is a particular type of monotone
system, i.e. a system of the form Gi

(
x, u1(x), . . . , um(x), Dui

)
= 0 in TN for every

i ∈ {1, . . . ,m}, where suitable monotonicity conditions with respect to the uj–
variables are assumed on the functions Gi, see [5, 14, 23, 25, 26]. In the specific case
considered in this paper, the conditions assumed on the coupling matrix imply, in
particular, that each function Gi is strictly increasing in ui and non–increasing in
uj for every j 6= i. This kind of monotonicity will be exploited in many points of
the paper.

Given a continuous function u on TN , we will call subtangent (respectively, su-
pertangent) of u at x0 a function φ of class C1 in a neighborhood U of x0 such that
u − φ has a local minimum (resp., maximum) at x0. Its gradient Dφ(x0) will be
called a subdifferential (resp. superdifferential) of u at x0. The set of sub and su-
perdifferentials of u at x0 will be denoted D−u(x0) and D

+u(x0), respectively. The
function φ will be furthermore termed strict subtangent (resp., strict supertangent)
if u−φ has a strict local minimum (resp., maximum) at x0. Any subtangent (resp.,
supertangent) φ of u can be always assumed strict at x0 without affecting Dφ(x0)
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by possibly replacing it with φ − d2(x0, ·) (resp. φ + d2(x0, ·)). We recall that u is
differentiable at x0 if and only if D+u(x0) and D

−u(x0) are both nonempty. In this
instance, D+u(x0) = D−u(x0) = {Du(x0)}. We refer the reader to [7, Chapter 3,
Propositions 3.1.5, 3.1.9] for the proofs.

When u is locally Lipschitz in TN , we will denote by ∂∗u(x0) the set of reachable
gradients of u at x0, that is the set

∂∗u(x0) = {lim
n
Du(xn) : u is differentiable at xn, xn → x0 },

while the Clarke’s generalized gradient ∂cu(x0) is the closed convex hull of ∂∗u(x0).
The set ∂cu(x0) contains both D+u(x0) and D−u(x0), in particular Du(x0) ∈
∂cu(x0) at any differentiability point x0 of u. We refer the reader to [9] for a
detailed treatment of the subject.

Definition 1.6. Let u ∈
(
C(TN )

)m
. We will say that u is a viscosity subsolution

of (1.2) if the following inequality holds for every (x, i) ∈ TN × {1, . . . ,m}:

Hi(x, p) +
(
B(x)u(x)

)
i
6 ai for every p ∈ D+ui(x).

We will say that u is a viscosity supersolution of (1.2) if the following inequality
holds for every (x, i) ∈ TN × {1, . . . ,m}:

Hi(x, p) +
(
B(x)u(x)

)
i
> ai for every p ∈ D−ui(x).

We will say that u is a viscosity solution if it is both a sub and a supersolution.

In the sequel, solutions, subsolutions and supersolutions will be always meant in
the viscosity sense, hence the adjective viscosity will be omitted.

Due to the convexity of the Hamiltonian Hi, the following equivalences hold:

Proposition 1.7. Let a ∈ R, i ∈ {1, . . . ,m} and u ∈
(
Lip(TN )

)m
. The following

facts are equivalent:

(i) Hi(x, p) +
(
B(x)u(x)

)
i
6 a for every p ∈ D+ui(x) and x ∈ TN ;

(ii) Hi(x, p) +
(
B(x)u(x)

)
i
6 a for every p ∈ D−ui(x) and x ∈ TN ;

(iii) Hi(x, p) +
(
B(x)u(x)

)
i
6 a for every p ∈ ∂cui(x) and x ∈ TN ;

(iv) Hi

(
x,Dui(x)

)
+
(
B(x)u(x)

)
i
6 a for a.e. x ∈ TN .

Next, we state a proposition that will be needed in the sequel, see also [14, 26,
23, 25] for similar results.

Proposition 1.8. Let F be a subset of
(
C(TN )

)m
and define the functions u, u on

TN by setting:

ui(x) = inf
u∈F

ui(x), ui(x) = sup
u∈F

ui(x) for every x ∈ TN and i ∈ {1, . . . ,m}.

Assume that u and u belong to
(
C(TN )

)m
and let a ∈ Rm. Then:

(i) if every u ∈ F is a subsolution of (1.2), then u is a subsolution of (1.2);

(ii) if every u ∈ F is a supersolution of (1.2), then u is a supersolution of (1.2).
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For a scalar Hamilton–Jacobi equation this proposition is well known, see for
instance Section 2.6 in [2]. Using monotonicity, the proof for the scalar case can be
easily generalized to our setting.

We will be also interested in the evolutionary counterpart of (1.2), i.e. the system

∂ui
∂t

+Hi(x,Dxui) +
(
B(x)u(t, x)

)
i
= 0 in (0,+∞)× TN ∀i ∈ {1, . . . ,m},

(1.3)

where we have denoted by u(t, x) =
(
u1(t, x), . . . , um(t, x)

)T
.

The following comparison result holds, see for instance [5] for a proof.

Proposition 1.9. Let T > 0 and v, u ∈
(
Lip([0, T ]×TN )

)m
be, respectively, a sub

and a supersolution of (1.3). Then, for every i ∈ {1, . . . ,m},
vi(t, x)− ui(t, x) 6 max

16i6m
max
TN

(
vi(0, ·)− ui(0, ·)

)
, (t, x) ∈ [0, T ]× TN .

By making use of this proposition and of Perron’s method, it is then easy to prove
the following

Proposition 1.10. Let u0 ∈
(
Lip(TN )

)m
. Then there exists a unique function

u(t, x) in
(
Lip(R+×TN )

)m
that solves the system (1.3) subject to the initial condition

u(0, x) = u0(x) in TN . Moreover, the Lipschitz constant of u(t, x) in R+×TN only
depends on the Hamiltonians H1, . . . , Hm and on the Lipschitz constant of u0.

We will denote by S(t)u0(x) the solution u(t, x) of (1.3) with initial datum u0.
This defines, for every t > 0, a map S(t) :

(
Lip(TN )

)m →
(
Lip(TN )

)m
.

We summarize in the next proposition the properties enjoyed by such maps, which
come as an easy application of the above results.

Proposition 1.11. For every t, s > 0 and u,v ∈
(
Lip(TN )

)m
we have:

(i) (Semigroup property) S(s)
(
S(t)u

)
= S(t+ s)u in TN ;

(ii) (Monotonicity) if v 6 u in TN , then S(t)v 6 S(t)u in TN ;

(iii) (Non–expansiveness property) ‖S(t)v − S(t)u‖∞ 6 ‖v − u‖∞;

(iv) for every a ∈ R, S(t)(u+ a1) = S(t)u+ a1 in TN .

The fact that the coupling matrix B(x) is everywhere degenerate is crucial for
assertion (iv).

2. The critical value

In this section we define the critical value and we study the corresponding critical
system.

We first establish a priori estimates for the subsolutions of the system (1.2).

Proposition 2.1. Let a = (a1, . . . , am)T ∈ Rm and u ∈
(
C(TN )

)m
such that(

B(x)u(x)
)
i
6 ai for every x ∈ TN and i ∈ {1, . . . ,m}. (2.1)

Then there exists a constant Ma only depending on a and B(x) such that

(i) ‖ui − uj‖∞ 6Ma for every i, j ∈ {1, . . . ,m};

(ii)
∣∣(B(x)u(x)

)
i

∣∣ 6Ma for every x ∈ TN and i ∈ {1, . . . ,m}.
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Proof. It suffices to prove the assertion for a = a1. Let us set

β? = min
16i6m

min
x∈TN

bii(x), β? = max
16i,j6m

max
x∈TN

|bij(x)|.

Such quantities are finite valued. Moreover, β? is strictly positive in view of Propo-
sition 1.2 and of the fact that B(x) is, for every x ∈ TN , an irreducible coupling
matrix with continuous coefficients.

Let us now fix x ∈ TN and assume, without any loss of generality that u1(x) 6
u2(x) 6 · · · 6 um(x). First notice that, by subtracting

m∑
j=1

bmj(x)um(x) = 0 from

both sides of equation (2.1) with i = m, one gets
∑
j 6=m

−bmj(x)
(
um(x) − uj(x)

)
6

a, yielding
(
um(x) − max

j 6=m
uj(x)

) ∑
j 6=m

−bmj(x) 6 a. Since B(x) is degenerate and

u1(x) 6 u2(x) 6 · · · 6 um(x) we get

0 6 um(x)− um−1(x) 6
a

bmm(x)
6 a

β?
. (2.2)

This proves assertion (i) when m = 2. To prove it in the general case, we argue by
induction: we assume the result true for m and we prove it for m+ 1. To this aim,
we restate equation (2.1) as

m−1∑
j=1

bij(x)uj(x) +
(
bim(x) + bim+1(x)

)
um(x) + bim+1(x)

(
um+1(x)− um(x)

)
6 a,

then we exploit (2.2) to get

m−1∑
j=1

bij(x)uj(x) +
(
bim(x) + bim+1(x)

)
um(x) 6 a

(
1 +

β?

β?

)
(2.3)

for every i ∈ {1, . . . ,m + 1}. The irreducible character of B(x) applied to the set
I = {m,m + 1} implies bim(x) + bim+1(x) > 0 for either i = m or i = m + 1,
let us say i = m for definitiveness. Assertion (i) now follows by applying the
induction hypothesis to the system given by (2.3) with i varying in {1, . . . ,m}, the
corresponding coupling matrix being still irreducible and degenerate.

To prove (ii) it suffices to note that, for every i ∈ {1, . . . ,m},

−
(
B(x)u(x)

)
i
= −bii(x)ui(x) +

∑
j 6=i

(
− bij(x)

)
uj(x)

6 −bii(x)ui(x) +
∑
j 6=i

−bij(x)
(
ui(x) + ‖ui − uj‖∞

)
6 (m− 1)β?‖ui − uj‖∞,

and the assertion follows from (i) and from hypothesis (2.1). �

As a consequence, we derive the following result:

Proposition 2.2. Let u = (u1, . . . , um)T ∈
(
C(TN )

)m
be a subsolution of (1.2) for

some a ∈ Rm. Then there exist constants Ca and κa, only depending on a, on the
Hamiltonians H1, . . . , Hm and on the coupling matrix B(x), such that

(i) ‖ui − uj‖∞ 6 Ca for every i, j ∈ {1, . . . ,m};
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(ii) u is κa–Lipschitz continuous in TN .

Proof. For each i ∈ {1, . . . ,m}, we have

Hi(x, p) +
(
B(x)u(x)

)
i
6 ai for every x ∈ TN and p ∈ D+ui(x).

Since D+ui(x) 6= ∅ for a dense set of points, see [7, Proposition 3.1.9], if we set
µ := inf{Hi(x, p) : (x, p) ∈ TN × RN , i = 1, . . . ,m } the continuity of B and u
implies

(
B(x)u(x)

)
i
6 ai − µ for every x ∈ TN . In view of Proposition 2.1 we get

(i) and ∣∣(B(x)u(x)
)
i

∣∣ 6 Ca for every x ∈ TN

with Ca :=Ma−µ1. Plugging this inequality in (1.2) we derive that ui is a viscosity
subsolution of

Hi(x,Dui) 6 ai + Ca in TN

and assertion (ii) follows as well via a standard argument that exploits the coercivity
of Hi(x, p) in p, see for instance [2, Lemma 2.5]. �

Next, we establish a remarkable property of weakly coupled systems.

Theorem 2.3. Assume that v, u ∈
(
C(TN )

)m
are, respectively a sub and a super-

solution of the weakly coupled system (1.2) for some a ∈ Rm. Let x0 ∈ TN be such
that

vi(x0)− ui(x0) =M := max
16i6m

max
TN

(vi − ui) for some i ∈ {1, . . . ,m}.

Then v(x0) = u(x0) +M1.

Proof. In view of Proposition 2.2, we know that v is Lipschitz continuous. Set

I =
{
i ∈ {1, . . . ,m} :

(
vi(x0)− ui(x0)

)
=M

}
.

We want to prove that I = {1, . . . ,m}. Indeed, if this were not the case, by the
irreducible character of the matrix B(x0) there would exist i ∈ I and k 6∈ I such
that bik(x0) < 0. We now make use of the method of doubling the variables to reach
a contradiction. For every ε > 0, we set

ψε(x, y) = vi(x)− ui(y)−
d(x, y)2

2ε2
− d(x, x0)

2

2
, x, y ∈ TN .

Let Mε = maxTN×TN ψε and denote by (xε, yε) a point in TN × TN where such a
maximum is achieved. By a standard argument in the theory of viscosity solution,
see for instance Lemma 2.3 in [2], the following properties hold:

xε, yε → x0,
d(xε, yε)

ε
→ 0 as ε→ 0. (2.4)

Furthermore, for ε > 0 small enough,

p′ε :=
xε − yε
ε2

∈ D−ui(yε), pε := p′ε − (xε − x0) ∈ D+vi(xε).

By the Lipschitz character of vi we derive that the vectors { pε : ε > 0 } are equi–
bounded, hence, up to subsequences and in view of the estimates (2.4), we infer
pε, p

′
ε → p0 as ε→ 0 for some vector p0 ∈ RN . We now use the fact that v and u

are a sub and supersolution of (3.1), respectively, to get

Hi(xε, pε) +
(
B(xε)v(xε)

)
i
6 0 and Hi(yε, p

′
ε) +

(
B(yε)u(yε)

)
i
> 0.

9



By subtracting the above inequalities and by passing to the limit for ε → 0 we end
up with (

B(x0)
(
v(x0)− u(x0)

))
i
6 0, (2.5)

that is, since i ∈ I and the matrix B(x0) is degenerate,

M bii(x0) 6
∑
j 6=i

−bij(x0)
(
vj(x0)− uj(x0)

)
6M

∑
j 6=i

−bij(x0) =Mbii(x0).

Hence the above inequalities are equalities, in particular vk(x0)− uk(x0) =M since
bik(x0) 6= 0, in contrast with the fact that k 6∈ I. �

Remark 2.4. Note that the degeneracy hypothesis on the coupling matrix is only
used at the very end of the proof of Theorem 2.3. In particular, the variable–doubling
argument still works under broader assumptions, and equation (2.5) is still valid,
even for non degenerate coupling matrices.

Definition 2.5. For every a ∈ Rm, we denote by H(a) the set of subsolutions of
the weakly coupled system (1.2). We will more simply write H(a) whenever a = a1
for some constant a ∈ R.

Lemma 2.6. The sets H(a) are convex and closed in
(
C(TN )

)m
, and increasing

with respect to the partial ordering on Rm.

Proof. Convexity and monotonicity are straightforward. The fact that the H(a) are
closed is a direct consequence of stability of viscosity subsolutions. �

We now focus our attention to the case a = a1. As a direct consequence of the
definition of the semigroup S(t), we get the following assertion:

Proposition 2.7. Let a ∈ R and u ∈
(
Lip(TN )

)m
. Then u is a viscosity solution

of (1.2) with a = a1 if and only if u = S(t)u+ t a1 in TN for every t > 0.

We have the following characterization:

Proposition 2.8. Let a ∈ R and u ∈
(
Lip(TN )

)m
. The following facts are equiva-

lent:

(i) u ∈ H(a);

(ii) the map t 7→ S(t)u+ t a1 is non–decreasing on [0,+∞).

In particular, the sets H(a) are stable under the action of the semigroup S(t), in the
sense that S(t)

(
H(a)

)
⊂ H(a).

The proof of this proposition is rather technical and it is postponed to the Ap-
pendix A.

Definition 2.9. The critical value c of the weakly coupled system (1.2) is defined as

c = inf{a ∈ R : H(a) 6= ∅ }. (2.6)

The following holds:

Proposition 2.10. The critical value c is finite and H(c) 6= ∅.

10



Proof. By the compactness of TN and the continuity of the Hamiltonians, it is easily
seen that the function u ≡ (0, . . . , 0)T is a subsolution of (1.2) for a01 with a0 ∈ R
big enough.

Let us proceed to show that c is finite valued and that H(c) 6= ∅. Let (an)n be
a decreasing sequence converging to c and let un ∈ H(an) for each n ∈ N. Arguing
as in the proof of Proposition 2.2 and taking into account that un is Lipschitz, we
obtain that µ 6 Hi(x,Du

n
i (x)) 6 an +Ma1 a.e. in TN for every i ∈ {1, . . . ,m} and

n ∈ N. This shows that c is finite.
We now exploit Proposition 2.2: by the monotonicity of the setsH(a) with respect

to a, we infer that the functions un are equi–Lipschitz. Up to subtracting a vector
of the form kn1 to each un, we can furthermore assume that un1 (0) = 0 for every
n ∈ N, yielding supn ‖un1‖∞ 6 L for some L ∈ R by the equi–Lipschitz character
of the sequence. Moreover, ‖unj − un1‖∞ 6 Ca1 for every j ∈ {1, . . . ,m} and n ∈ N,
yielding ‖unj ‖∞ 6 Ca1 +L for every j ∈ {1, . . . ,m} and n ∈ N. Up to subsequences,

by the Arzela–Ascoli theorem, we infer that un ⇒ u in TN and u ∈ H(c) by
stability of the notion of viscosity subsolution. �

We now proceed to show that a weakly coupled system of the kind (1.2) with
a = a1 possesses solutions if and only if a equals the critical value c.

We start with a preliminary result.

Proposition 2.11. Let B(x) be a continuous irreducible coupling matrix on TN and
let us assume that B(x) is invertible for every x ∈ TN . Let v, u ∈

(
C(TN )

)m
be,

respectively, a sub and a supersolution of the weakly coupled system (1.2), for some
a ∈ Rm. Then v(x) 6 u(x) for every x ∈ TN .

Proof. By the continuity of B(x)v(x) and the coercivity of the Hamiltonians Hi, we
easily get that v is Lipschitz, cf. proof of Proposition 2.2.

Set M = max16i6mmaxTN (vi − ui). We want to prove that M 6 0. Assume
by contradiction that M > 0 and pick a point x0 ∈ TN where such a maximum
is attained. Set I =

{
i ∈ {1, . . . ,m} : vi(x0) − ui(x0) = M

}
. Using a variable–

doubling argument as in the proof of Theorem 2.3 (see also remark 2.4) we infer
that (

B(x0)
(
v(x0)− u(x0)

))
i
6 0 for every i ∈ I. (2.7)

If I = {1, . . . ,m}, inequality (2.7) must be an equality since the matrix B(x0)
satisfies condition (C) and this is in contradiction with the fact that it is invertible.
If I 6= {1, . . . ,m}, we choose i ∈ I and k 6∈ I such that bik(x0) < 0. From (2.7) and
the assumption that M > 0 we infer that

M bii(x0) 6
∑
j 6=i

−bij(x0)
(
vj(x0)− uj(x0)

)
6M

∑
j 6=i

−bij(x0) 6Mbii(x0),

which implies that vk(x0)− uk(x0) =M , in contrast with the fact that k 6∈ I. �

The next result implies that solutions to a weakly coupled system of the kind
(1.2) with a = a1 may exist only if a equals the critical value.

Proposition 2.12. Let a, b ∈ R and v, u ∈
(
C(TN )

)m
such that the following

inequalities are satisfied in the viscosity sense:

Hi(x,Dvi) +
(
B(x)v(x)

)
i
6 a and Hi(x,Dui) +

(
B(x)u(x)

)
i
> b in TN

for every i ∈ {1, . . . ,m}. Then b 6 a.
11



Proof. Let us assume by contradiction that b > a. Up to replacing v with v+k1 with
k > 0 big enough, we can assume v > u in TN . Let ε > 0 such that b−ε > a+ε. By
continuity of the functions v and u, we can find λ > 0 such that ‖λ vi‖∞, ‖λui‖∞ <
ε for every i ∈ {1, . . . ,m}. Then the following inequalities hold in the viscosity sense
in TN :

Hi(x,Dui)+
(
(B(x)+λ I)u(x)

)
i
> b− ε > a+ ε > Hi(x,Dvi)+

(
(B(x)+λ I)v(x)

)
i
.

For every x ∈ TN , the matrix B(x) + λ I is irreducible, satisfies (C) and the sum of
the elements of each of its rows is strictly positive, hence it is invertible in view of
Proposition 1.4. By Proposition 2.11 we conclude that v 6 u in TN , achieving a
contradiction. �

The next theorem is already known in literature, see [28, 6], and is proved by
the ergodic approximation method. We provide here a new proof using an idea
introduced in [18].

Theorem 2.13. There exists a function u ∈ H(c) that solves the weakly coupled
system

Hi(x,Dui) +
(
B(x)u(x)

)
i
= c in TN for every i ∈ {1, . . . ,m} (2.8)

in the viscosity sense.

Proof. We have already proved in Proposition 2.10 that H(c) 6= ∅. Let us introduce

the quotient space Ĥ = H(c)\R1, where we identify critical subsolutions that differ
by a constant vector belonging to R1. Arguing as in the proof of Proposition 2.10, it
is easily seen that Ĥ is compact for the topology of uniform convergence. Indeed, it
is isomorphic to the subset of H(c) of subsolutions whose first component vanishes
at the point x = 0. Moreover, since the viscosity semigroup commutes with the
addition of vectors of the form λ1 and leaves H(c) stable, it induces a continuous

semigroup, denoted Ŝ, on Ĥ.
By the Schauder–Tychonoff fixed point theorem (see [13, Theorem 2.2, page 414]),

Ŝ possesses a fixed point, that is, there exists an element û ∈ Ĥ such that ∀t >
0, Ŝ(t)û = û. Lifting these relations to H(c), we get that, for every t > 0, there
exists ct ∈ R such that S(t)u = u+ ct1, where u is any element in the equivalence
class of û. Since S is a semigroup, one readily realizes that ct+s = ct+ cs for every
t, s > 0. Since t 7→ S(t)u is continuous, we necessarily deduce that ct = −tc̃ for all
t > 0 for some constant c̃ ∈ R. The identity S(t)u = u − tc̃1, for all t > 0, implies
that u is a viscosity solution of (2.8) with c̃ in place of c, see Proposition 2.7. But
then c̃ = c in view of Proposition 2.12 and the statement is proved. �

3. The Aubry set

In this section we start our qualitative analysis on the critical weakly coupled
system, i.e. the system (1.2) with a = c1, where c is defined via (2.6). From now
on we will always assume the critical value c to be equal to 0. This renormalization
is always possible by replacing each Hi with Hi − c. The critical weakly coupled
system reads as

Hi(x,Dui) +
(
B(x)u(x)

)
i
= 0 in TN for every i ∈ {1, . . . ,m}. (3.1)

Solutions, subsolutions and supersolutions of (3.1) will be termed critical in the
sequel. The family of critical subsolutions, we recall, is denoted by H(0).
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Our qualitative analysis on the critical weakly coupled system is based on the
notion of Mañé matrix, defined in analogy with that of the Mañé potential.

Definition 3.1. For all (x, y, i, j) ∈ TN × TN × {1, . . . ,m} × {1, . . . ,m}, we define

Φi,j(y, x) = sup
v∈H(0)

vi(x)− vj(y).

The following properties hold:

Proposition 3.2. The Mañé matrix verifies the following properties:

(i) it is everywhere finite and Lipschtiz continuous;

(ii) Φ·,j(y, ·) is a critical solution, for every (y, j) ∈ TN × {1, . . . ,m};

(iii) for every (y, j) ∈ TN × {1, . . . ,m} and v ∈ H(0),

v − vj(y)1 6 Φ·,j(y, ·) in TN ,

namely Φ·,j(y, ·) is the maximal critical subsolution whose j–th component
vanishes at y;

(iv) the entries of the Mañé matrix are linked by the following triangular inequal-
ity:

Φi,k(x, z) 6 Φj,k(x, y) + Φi,j(y, z)

for every i, j, k ∈ {1, . . . ,m} and x, y, z ∈ TN .

Proof. The fact that the Mañé matrix is well defined directly follows from Propo-
sition 2.2. Lipschitz continuity comes from the equi–Lipschitz character of critical
subsolutions.

The second assertion comes from the fact that Φ·,j(y, ·) is, for every fixed (j, y), a
supremum of critical subsolutions, hence itself a critical subsolution by Proposition
1.8.

The third point is a direct consequence of the definition.
The last point comes from the fact that Φ·,j(y, ·) is the greatest subsolution whose

j–th component vanishes at y. Since Φ·,k(x, ·) − Φj,k(x, y)1 is a subsolution whose
j–th component vanishes at y we obtain that Φ·,k(x, ·) − Φj,k(x, y)1 6 Φ·,j(y, ·),
which is the triangular inequality to be proved. �

As in the case of a single critical equation, the Mañé vectors are “almost” critical
solutions, in the sense explained below:

Proposition 3.3. Let y0 ∈ TN and i0 ∈ {1, . . . ,m}. Then the function u =
Φ·,i0(y0, ·) satisfies

Hi(x,Dui) +
(
B(x)u(x)

)
i
= 0 in {1, . . . ,m} × TN \ {(i0, y0)}

in the viscosity sense.

Proof. We argue by contradiction, following the classical argument of [18] for the
classical Mañé potential.

Let (i, y) be such that either i 6= i0 or y 6= y0. Let us assume that the viscosity
supersolution condition is violated at (i, y). This means that there exists a C1 func-
tion ψ such that ψ(x) 6 Φi,i0(y0, x) for all x, with equality if and only if x = y, and
Hi

(
x,Dψ(y)

)
+
(
B(y)Φ·,i0(y0, y)

)
i
< 0. Since ψ is C1, and B(·) and Φ·,i0(x0, ·) are

continuous, it is clear that this strict inequality continues to hold in a neighborhood
13



of y. We infer that it is possible to find ε > 0 small enough such that the function
wi := max{Φi,i0(y0, ·), ψ + ε} verifies

Hi

(
x,Dwi(x)

)
+
(
B(x)w(x)

)
i
6 0 for a.e. x ∈ TN ,

where w is the vector whose i–th coordinate is wi and whose other coordinates are
those of Φ·,i0(y0, ·). In the case when i = i0 and y 6= y0, we choose ε > 0 small
enough in such a way that wi(y0) = Φi,i0(y0, y0) = 0. Moreover, for every j 6= i,

Hj

(
x,Dwj(x)

)
+
(
B(x)w(x)

)
j
6 0 for a.e. x ∈ TN ,

as it is easily seen from the fact that bji(·) 6 0 in TN and wi > Φi,i0(y0, ·).
We have thus shown that w is a critical subsolution with wi0(y0) = 0, w >

Φi,i0(y0, ·) and w 6≡ Φi,i0(y0, ·), thus contradicting the maximality of Φi,i0(y0, ·)
amongst subsolutions whose i0–th coordinate vanishes at y0. �

Next, we show a strong invariance property enjoyed by the rows of the Mañé
matrix.

Proposition 3.4. Let i, j ∈ {1, . . . ,m} and y ∈ TN . If Φ·,i(y, ·) is a critical solution
on TN , then Φ·,j(y, ·) is too.

Proof. Let us set v := Φ·,j(y, ·) and u := Φ·,i(y, ·) + Φi,j(y, y)1. In view of Proposi-
tion 3.3, we only need to show thatHj(y, p)+

(
B(y)v(y)

)
j
> 0 for every p ∈ D−vj(y).

According to Proposition 3.2, v 6 u in TN and vi(y) = ui(y). The functions v and
u being respectively a critical subsolution and a solution, we can apply Theorem 2.3
to infer that v(y) = u(y). This also implies that D−vj(y) ⊆ D−uj(y). Exploiting
again the fact that u is a critical solution we finally get

0 6 Hj(y, p) +
(
B(y)u(y)

)
j
= Hj(y, p) +

(
B(y)v(y)

)
j

for every p ∈ D−vj(y).

�
In view of the previous proposition, the following definition is well posed:

Definition 3.5. The Aubry set A for the weakly coupled system (3.1) is the set
defined as

A =
{
y ∈ TN : Φ·,i(y, ·) is a critical solution

}
,

where i is any fixed index in {1, . . . ,m}.

By the continuity of the Mañé matrix and the stability of the notion of viscosity
solution, it is easily seen that A is closed. The analysis we are about to present will
show that the Aubry set is nonempty: as in the corresponding critical scalar case,
we will see that A is the set where the obstruction to the existence of globally strict
critical subsolutions concentrates.

Definition 3.6. Let v ∈ H(0). We will say that vi is strict at y ∈ TN if there exist
an open neighborhood V of y and δ > 0 such that Hi

(
x,Dvi(x)

)
+
(
B(x)v(x)

)
i
< −δ

for a.e. x ∈ V .
We will say that vi is strict in an open subset U of TN if it is strict at y for every

y ∈ U .

We start by establishing an auxiliary result that will be needed in the sequel.
By modulus we mean a nondecreasing function from R+ to R+, vanishing and

continuous at 0.
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We will say that (ρn)n is a sequence of standard mollifiers if ρn(x) := nNρ(nx) in
RN for each n ∈ N, where ρ is a smooth, non–negative function on RN , supported
in B1 and such that its integral over RN is equal to 1.

Lemma 3.7. Let w ∈ H(0) such that wi is strict at y ∈ TN . Then there exists
w̃ ∈ H(0) such that w̃i is C

∞ and strict in a neighborhood of y.

Proof. By hypothesis, there exist r > 0 and δ > 0 such that

Hi

(
x,Dwi(x)

)
+
(
B(x)w(x)

)
i
< −δ for a.e. x ∈ B2r(y).

Let φ : TN → [0, 1] be a C∞–function, compactly supported in Br(y) and such that
φ ≡ 1 in Br/2(y). Let us denote by κ a Lipschitz constant for the critical subsolutions

and by ω a continuity modulus of Hi in TN × BR for some fixed R > κ + ‖Dφ‖∞.
Let (ρn)n be a sequence of standard mollifiers on RN and define

ψn(x) = (ρn ∗ wi)(x) + ‖ρn ∗ wi − wi‖∞, x ∈ TN .

Note that ψn > wi in TN for every n ∈ N and dn := ‖ψn − wi‖∞ → 0 as n→ +∞.
Up to neglecting the first terms, we furthermore assume that all the dn are less

than 1. For every n ∈ N, we define a function w̃n ∈
(
Lip(TN )

)m
by setting wn

i (x) =

φ(x)ψn(x) +
(
1 − φ(x)

)
wi(x) and w̃n

j (x) = wj(x) if j 6= i, for every x ∈ TN . It is

apparent by the definition that w̃n
i is of class C∞ in Br/2(y). Moreover the functions

(w̃n
i )n, and hence the (w̃n)n, are equi–Lipschitz. Indeed, for almost every x ∈ TN ,

Dw̃n
i (x) = φ(x)Dψn(x) +

(
1− φ(x)

)
Dwi(x) +

(
ψn(x)− wi(x)

)
Dφ(x) (3.2)

that is ‖Dw̃n
i ‖∞ 6 κ+‖Dφ‖∞. We want to show that n can be chosen sufficiently

large in such a way that w̃n ∈ H(0) and

Hi

(
x,Dw̃n

i (x)
)
+
(
B(x)w̃n(x)

)
i
< −2

3
δ for a.e. x ∈ Br(y). (3.3)

We first note that, since w̃n
i > wi and bji 6 0 in TN for every j 6= i, we have

Hj(x,Dw̃
n
j (x)) +

(
B(x)w̃n(x)

)
j
6 0 in TN for every j 6= i. (3.4)

Moreover, since w̃n agrees with w outside Br(y), in order to show that w̃n satisfies
(3.4) also for j = i, it will be enough, by the convexity of Hi, to prove (3.3).

To this aim, we start by noticing that

Hi

(
x,Dw̃n

i (x)
)
6 φ(x)Hi

(
x,Dψn(x)

)
+
(
1− φ(x)

)
Hi

(
x,Dwi(x)

)
+ ω (dn ‖Dφ‖∞)

(3.5)
for almost every x ∈ TN , in view of (3.2) and of the convexity of Hi. By Jensen’s
inequality, for every n > 1/r and every x ∈ Br we have

Hi

(
x,Dψn(x)

)
= Hi

(
x,

∫
B1/n

Dwi(x− y)ρn(y) dy

)

6
∫
B1/n

Hi

(
x,Dwi(x− y)

)
ρn(y) dy

6 ω(1/n) +

∫
B1/n

Hi

(
x− y,Dwi(x− y)

)
ρn(y) dy

6 −
∫
B1/n

(
B(x− y)w(x− y)

)
i
ρn(y) dy − δ + ω(1/n)

6 −
(
B(x)w̃n(x)

)
i
− δ + ω(1/n) + εn, (3.6)

15



where

εn := sup
|z|61/n

∥∥(B(·+ z)w(·+ z)−B(·)w̃n(·)
)
i

∥∥
∞.

Since w̃n ⇒ w in TN and all these functions are equi–Lipschitz, it is easily seen that
limn εn = 0. Furthermore

Hi

(
x,Dwi(x)

)
6 −

(
B(x)w̃n(x)

)
i
− δ + εn for a.e. x ∈ Br(y). (3.7)

We now choose n > 1/r sufficiently large such that ω (dn ‖Dφ‖∞)+ω(1/n)+εn < δ/6
and plug (3.6) and (3.7) into (3.5) to finally get (3.3). The assertion follows by setting
w̃ := w̃n for such an index n. �

The next proposition shows that the i–th component of any critical subsolution
fulfills the supersolution test on A.

Proposition 3.8. Let y ∈ A. Then, for every i ∈ {1, . . . ,m} and w ∈ H(0),

Hi(y, p) +
(
B(y)w(y)

)
i
= 0 for every p ∈ D−wi(y). (3.8)

Proof. Pick w ∈ H(0) and set u = Φ·,i(y, ·) +wi(y)1. According to Proposition 3.2,
w 6 u and, by definition of u, wi(y) = ui(y), in particular D−wi(y) ⊆ D−ui(y).
Now we exploit the fact that u and w are a critical solution and subsolution, re-
spectively: from Theorem 2.3 we infer that w(y) = u(y), while Proposition 1.7
implies

0 > Hi(y, p) +
(
B(y)w(y)

)
i
= Hi(y, p) +

(
B(y)u(y)

)
i
> 0 ∀p ∈ D−wi(y).

Hence all the inequalities must be equalities and the statement follows. �

A converse of this result is given by the following

Proposition 3.9. Let i ∈ {1, . . . ,m}. The following facts are equivalent:

(i) y 6∈ A;

(ii) there exists w ∈ H(0) such that wi is strict at y.

Moreover, wi can be taken of class C1 in a neighborhood of y.

Proof. Let us assume (i). Since y 6∈ A, the supersolution test for Φ·,i(y, ·) is violated
at (i, y). This means that there exists a C1 function ψ such that ψ(x) 6 Φi,i(y, x) for
all x, with equality if and only if x = y, and Hi

(
x,Dψ(y)

)
+
(
B(y)Φ·,i(y, y)

)
i
< 0.

We define a function w ∈
(
Lip(TN )

)m
by setting

wi(·) = max{Φi,i(y, ·), ψ + ε}, wj(·) = Φj,i(y, ·) for j 6= i.

Arguing as in the proof of Proposition 3.3 we see that it is possible to choose ε > 0
in a such a way that w is a critical subsolution. Moreover, since wi agrees with ψ+ε
in a neighborhood of y, there exist δ > 0 and an open neighborhood W of y such
that wi is of class C

1 in W and

Hi

(
x,Dwi(x)

)
+
(
B(x)w(x)

)
i
< −δ for every x ∈W.

Conversely, let assume (ii). According to Lemma 3.7, there exists w̃ ∈ H(0) such
that w̃i is smooth and strict in a neighborhood of y, in particular Hi

(
y,Dw̃i(y)

)
+(

B(y)w̃(y)
)
i
< 0.

In view of Proposition 3.8 we conclude that y 6∈ A. �
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Remark 3.10. Proposition 3.8 expresses the fact, roughly speaking, that the i–
th component of a critical subsolution cannot be strict at y. However, since the
supersolution test (3.8) is void when D−wi(y) is empty, this fact cannot be directly
used to prove the equivalence stated in Proposition 3.9. This is the reason why we
needed the regularization Lemma 3.7.

We proceed by proving a global version of the previous proposition. We give a
definition first.

Definition 3.11. Let v ∈ H(0). We will say that v is strict at y if vi is strict at y
for every i ∈ {1, . . . ,m}. We will say that v is strict in an open subset U of TN if
it is strict at y for every y ∈ U .

Theorem 3.12. There exists v ∈ H(0) which is strict in TN \A. In particular, the
Aubry set A is closed and nonempty.

Proof. Fix i ∈ {1, . . . ,m}. We first construct a critical subsolution vi whose i–th
component is strict in TN \ A. According to Proposition 3.9, for every y ∈ TN \ A
there exist an open neighborhoodWy of y, a critical subsolution wy and δy > 0 such
that

Hi

(
x,Dwy

i (x)
)
+
(
B(x)wy(x)

)
i
< −δy for a.e. x ∈Wy (3.9)

The family {Wy : y ∈ TN \ A} is an open covering of TN \ A, from which we can
extract a countable covering (Wn)n of TN \ A. For each n ∈ N, let us denote by
(wn, δn) the corresponding pair in H(0) × (0,+∞) that satisfies (3.9) in Wn. Up
to subtracting to each critical subsolution wn a vector of the form kn1, we can
moreover assume that wn

1 (0) = 0. Hence the functions wn are equi–Lipschitz and
equi–bounded in view of Proposition 2.2, in particular the function

vi(x) =

∞∑
n=1

1

2n
wn(x), x ∈ TN

is well defined and belongs to
(
Lip(TN )

)m
. By convexity of the Hamiltonians, for

almost every x ∈ TN we get

Hi

(
x,Dvii(x)

)
+
(
B(x)vi(x)

)
i
6

∞∑
n=1

1

2n

(
Hi

(
x,Dwn

i (x)
)
+
(
B(x)wn(x)

)
i

)
6 0.

Moreover, the above inequalities hold with −δk/2k in place of 0 almost everywhere
in Wk, for every k ∈ N. This shows that vi is a critical subsolution, strict in TN \A.

Now set v(x) =
m∑
i=1

1
mvi(x), for x ∈ TN . A similar argument shows that v is a

critical subsolution that satisfies the assertion.
IfA = ∅, by compactness we would haveH(−δ) 6= ∅ for some δ > 0, contradicting

the definition of the critical value c = 0. �

In view of Proposition 3.9, we have the following characterization:

Theorem 3.13. Let y ∈ TN . The following are equivalent facts:

(i) y /∈ A;

(ii) there exists w ∈ H(0) which is strict at y;

(iii) there exists w ∈ H(0) and i ∈ {1, . . . ,m} such that wi is strict at y.
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We end this section by extending to weakly coupled systems a result which is well
known in the case of a single critical equation.

Proposition 3.14. The following equality holds:

A =
⋂

w∈H(0)

{
y ∈ TN :

(
S(t)w

)
(y) = w(y) for every t > 0

}
.

Proof. Let us denote by A′ the set appearing at the right–hand side of the above
equality. Fix a point y ∈ A and let w be any critical subsolution. For every fixed
index i ∈ {1, . . . ,m}, the function ui = Φ·,i(y, ·) + wi(y)1 satisfies w 6 ui in TN

and wi(y) = ui(y). Moreover, ui is a critical solution, hence it is a fixed point for
the semigroup S(t) by Proposition 2.7. By monotonicity of the semigroup, we have

wi(y) 6
(
S(t)w

)
i
(y) 6

(
S(t)ui

)
i
(y) = uii(y) for every t > 0,

hence all the inequalities must be equalities, in particular
(
S(t)w

)
i
(y) = wi(y) for

every t > 0. This being true for every i ∈ {1, . . . ,m} and w ∈ H(0), we conclude
that y ∈ A′.

To prove the converse inclusion, pick y ∈ A′ and assume by contradiction that
y 6∈ A. Fix i ∈ {1, . . . ,m} and take a critical subsolution v such that vi is of class C

1

and strict in a neighborhood of y, according to Proposition 3.9. By Proposition 2.8,
the map (t, x) 7→ vi(x) is a subtangent to

(
S(t)v)i(x) at (t0, y) for every t0 > 0 and

since the latter is a solution of the evolutionary system (1.3) we get Hi(y,Dvi(y))+(
B(y)S(t0)v(y)

)
i
> 0.

By sending t0 → 0+ we get a contradiction with the fact that vi is strict at y.
�

4. Regularization

In this section we obtain critical subsolutions which are smooth and strict outside
the Aubry set. Note that in the scalar case, under some regularity assumptions on
the Hamiltonian, there exist critical subsolutions that are of class C1, or even of class
C1,1, on the whole torus and strict outside the Aubry set, see [4, 19, 20]. For systems,
we are not able to do it because we do not know how to prove the differentiability of
critical subsolutions on the Aubry set. However, we end the section with some more
precise behavior of their Clarke derivative on the Aubry set, when all Hamiltonians
Hi(x, p) are strictly convex in p.

The existence of critical subsolutions, smooth and strict outside the Aubry set,
is obtained by regularization like in [19, 20]. We provide a proof mostly for the
reader’s convenience.

We start with a local regularization argument.

Lemma 4.1. Let u ∈ H(0) and assume that, for some r > 0, δ > 0 and y ∈ TN \A
and for every i ∈ {1, . . . ,m},

Hi

(
x,Dui(x)

)
+
(
B(x)u(x)

)
i
< −δ for a.e. x ∈ B2r(y).

Then, for every ε > 0, there exists uε ∈ H(0) such that

(i) ‖uε − u‖∞ < ε;

(ii) uε = u in TN \Br(y);
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(iii) uε is of class C∞ in Br/2(y) and satisfies

Hi

(
x,Duεi (x)

)
+
(
B(x)uε(x)

)
i
< −2

3
δ for every x ∈ Br/2(y). (4.1)

Proof. Let φ : TN → [0, 1] be a C∞ function, compactly supported in Br(y) and
such that φ ≡ 1 in Br/2(y). Let (ρn)n be a sequence of standard mollifiers on RN .

For every n ∈ N, we define a function wn ∈
(
Lip(TN )

)m
by setting

wn
i (x) = φ(x)(ρn ∗ui)(x)+

(
1−φ(x)

)
ui(x) for every x ∈ TN and i ∈ {1, . . . ,m}.

It is apparent by the definition that wn is of class C∞ in Br/2(y) and agrees with u
outside Br(y). Arguing as in the proof of Lemma 3.7, we see that it is possible to
choose n large enough in such a way that wn is a critical subsolution and satisfies
(4.1). Sincewn ⇒ u in TN , the assertion follows by setting uε := wn for a sufficiently
large n. �

We now prove the announced regularization result.

Theorem 4.2. There exists a critical subsolution which is strict and C∞ in Tn \A.
More precisely, for every critical subsolution v which is strict in TN \ A and for
every ε > 0, there exists vε ∈ H(0) such that

(i) ‖vε − v‖∞ < ε;

(ii) vε = v on A;

(iii) vε is C∞ and strict in Tn \ A.

Moreover, the set of such smooth and strict subsolutions is dense in H(0).

Proof. We first show how to regularize a subsolution which is strict outside the
Aubry set. Let v be such a subsolution (given by Theorem 3.12) and fix ε > 0.
Since v is strict in TN \ A, there exists a continuous and non–negative function
δ : TN → R with δ−1 ({0}) = A such that Hi(x,Dvi) +

(
B(x)v(x)

)
i
6 −δ(x) in TN

for every i ∈ {1, . . . ,m}. Clearly, it is not restrictive to assume that the inequality
δ(x) 6 min{ε/2, d(x,A)2} holds for every x ∈ TN , where d(x,A) := infy∈A d(x, y).

In view of Lemma 4.1, we can find a locally finite covering (Un)n of TN \A by open
sets compactly contained in TN \ A and a sequence (un)n of critical subsolutions
such that each un is C∞ in Un and satisfies

Hi(x,Du
n
i ) +

(
B(x)un(x)

)
i
6 −2

3
δ(x) for every x ∈ Un,

|un(x)− v(x)| 6 δ(x) for every x ∈ TN . (4.2)

Set δn := infx∈Un δ(x) for every n ∈ N and choose a sequence (ηn)n in (0, 1) such
that, for every x ∈ TN and n ∈ N, the following holds:

|H(x, p)−H(x, p′)| < δn
6

for all p, p′ ∈ Bκ+1 with |p− p′| < ηn, (4.3)

where κ denotes a common Lipschitz constant for the critical subsolutions, in par-
ticular for all the un. Last, take a smooth partition of unity (ϕn)n subordinate to
(Un)n and choose the functions un in such a way that the quantities ‖un − v‖∞,
which can be be made as small as desired, satisfy∑

k∈N
Uk∩Un 6=∅

‖uk − v‖∞ ‖Dϕk‖∞ < ηn for every n ∈ N. (4.4)
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That is always possible since the covering (Un)n is locally finite.

We now define vε : TN → Rm by setting vε(x) =
∞∑
n=1

ϕn(x)u
n(x) in TN \ A and

vε(x) = v(x) on A. By definition, vε satisfies assertion (ii) and is C∞ in TN \ A.
From (4.2) we infer that |vε(x)− v(x)| 6 δ(x) in TN \ A, which shows at once that
vε is continuous in TN and that it satisfies assertion (i). Moreover, by taking into
account (4.4) and the fact that

∑
Dϕk ≡ 0, one obtains, for every x ∈ Un and

i ∈ {1, . . . ,m}, that∣∣∣Dvεi (x)− ∑
k∈N

Uk∩Un 6=∅

ϕk(x)Du
k
i (x)

∣∣∣ = ∣∣∣ ∑
k∈N

Uk∩Un 6=∅

(
uki (x)− v(x)

)
Dϕk(x)

∣∣∣ < ηn, (4.5)

in particular

|Dvεi (x)| 6 ηn +
∑
k∈N

Uk∩Un 6=∅

ϕk(x)|Duki (x)| 6 1 + κ.

We infer that vε is Lipschitz–continuous in TN . In order to prove that vε is a critical
subsolution and is strict in TN \ A, it will be enough to show that

Hi(x,Dv
ε
i (x)) +

(
B(x)vε(x)

)
i
6 −δ(x)

2
for a.e. x ∈ TN ,

for all i ∈ {1, . . . ,m}.
Recall the Lipschitz functions vε and v coincide on the Aubry set. Setting wε =

vε−v, we infer that if x0 ∈ A, then |wε(x)−wε(x0)| 6 d(x,A)2 6 d(x, x0)
2. Hence

wε is differentiable on A with vanishing differential and Dvε(x) = Dv(x) for almost
every x ∈ A. Hence, it suffices to establish the claim in the complementary of A. To
this aim, by recalling the definition of ηn and by making use of (4.5) and of Jensen
inequality, we get that, for every x ∈ Un and i ∈ {1, . . . ,m},
Hi

(
x,Dvεi (x)

)
+
(
B(x)vε(x)

)
i
6

6 Hi

(
x,

∑
k∈N

Uk∩Un 6=∅

ϕk(x)Du
k
i (x)

)
+
δn
6

+
∑
k∈N

Uk∩Un 6=∅

ϕk(x)
(
B(x)uk(x)

)
i

6
∑
k∈N

Uk∩Un 6=∅

ϕk(x)
(
Hi

(
x,Duki (x)

)
+
(
B(x)uk(x)

)
i

)
+
δn
6

< −2

3
δ(x) +

δn
6

6 −δ(x)
2
.

This concludes the proof of the first part of the statement.
For the density, let u be any critical subsolution. Let v be a critical subsolution

which is strict outside the Aubry set (whose existence is assured by Theorem 3.12).
Then, for any λ ∈ (0, 1), the function (1− λ)u+ λv is a subsolution which is strict
outside the Aubry set. This subsolution can be therefore regularized using the above
procedure, giving a subsolution w which is strict and smooth outside the Aubry set.
Moreover, both these steps can be done in such a way that ‖u−w‖∞ is as small as
wanted. This establishes the density. �

We now additionally assume the Hamiltonians Hi to be strictly convex in p and
derive some further information on the behavior of Clarke’s generalized gradients of
the critical subsolutions on the Aubry set.
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We start with a preliminary lemma.

Lemma 4.3. Let y ∈ A and let u1, · · · ,u` be critical subsolutions. Then, for all

i ∈ {1, . . . ,m}, the set
⋂`

k=1 ∂
cuki (x) is nonempty. Moreover, it contains a vector pi

which is extremal for all the sets ∂cuki (x) and which satisfies

Hi(y, pi) +
(
B(y)uk(y)

)
i
= 0 for every k ∈ {1, . . . , `}.

Proof. Let w = 1
`

∑`
k=1 u

k ∈ H(0) and let pi ∈ ∂cwi(y) be such that Hi(y, p) +(
B(y)w(y)

)
i
= 0. Such a pi must exist because otherwise wi would be strict at

y. Note that, by strict convexity of Hi, the vector pi must be an extremal point
of ∂cwi(x), hence it is a reachable gradient of wi. Let yn → y be such that uki is
differentiable at yn for every k ∈ {1, . . . , `} and n ∈ N, and

Dwi(yn) =
1

`

∑̀
k=1

Duki (yn) → pi.

Up to extraction of a subsequence, we can assume that Duki (yn) → qk for all k ∈
{1, . . . , `}. Then one readily obtains, by Jensen’s inequality, that

0 = Hi(y, pi) +
(
B(y)w(y)

)
i
6 1

`

∑̀
k=1

(
Hi(y, qk) +

(
B(y)uk(y)

)
i

)
6 0.

Therefore, all the inequalities Hi(y, qk) + (B(y)uk(y))i 6 0 summing to an equality,
we deduce, by strict convexity of Hi, that q1 = · · · = ql = pi. Moreover, since

Hi(y, qk) +
(
B(y)uk(y)

)
i
= 0 for every k ∈ {1, . . . , `},

and because of the strict convexity of Hi, one sees that pi is extremal, and thus
reachable, for all the uki . �

We now extend the previous result as follows:

Proposition 4.4. Let y ∈ A. Then, for each i ∈ {1, . . . ,m}, there exists a vector
pi ∈ RN which is a reachable gradient of ui at y for every u ∈ H(0) and which
satisfies Hi(y, pi) +

(
B(y)u(y)

)
i
= 0.

Proof. For each critical subsolution u, let us denote by Pu
i the set of reachable

gradients p of ui at y that satisfy Hi(y, p) +
(
B(y)u(y)

)
i
= 0. This set is not empty

and compact. The proposition amounts to proving that
⋂

u∈H(0) P
u
i 6= ∅. If this

were not the case, by compactness we could extract a finite empty intersection. But
this would violate the previous lemma. �

5. Rigidity of the Aubry set and Comparison Principle

We start with the following consequence of Theorem 2.3.

Proposition 5.1. Let y ∈ A and i ∈ {1, . . . ,m}. Then v(y) = Φ·,i(y, y) + vi(y)1
for every v ∈ H(0).

In particular, v(y)−w(y) ∈ R1 for any v, w ∈ H(0).

Proof. Take v ∈ H(0) and set u := Φ·,i(y, ·) + vi(y)1. According to Proposition
3.2, u is a critical solution satisfying v 6 u in TN and vi(y) = ui(y). By applying
Theorem 2.3 with x0 := y we get the assertion. �
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Remark 5.2. On the other hand, the above property does not hold when y 6∈ A.
Indeed, the proof of Lemma 3.7 shows that any critical subsolution v which is strict
at y can be modified in such a way that the output is a critical subsolution all of
whose components except one coincide at y with those of v.

We derive two corollaries:

Corollary 5.3. Let y ∈ A. Then the matrix Φ(y, y) is antisymetric.

Proof. Apply the previous theorem to the weak KAM solution Φ·,j(y, ·) and get
Φ·,j(y, y) = Φ·,i(y, y) + Φi,j(y, y)1. In particular, 0 = Φj,j(y, y) = Φj,i(y, y) +
Φi,j(y, y). �

Corollary 5.4. Let y ∈ A. Then the critical solutions Φ·,j(y, ·) differ by a constant
function. More precisely: Φ·,i(y, ·) = Φ·,j(y, ·) + Φj,i(y, y)1.

Proof. Let us apply the last point of Proposition 3.2 twice:

Φk,i(y, z) 6 Φj,i(y, y) + Φk,j(y, z) and Φk,j(y, z) 6 Φi,j(y, y) + Φk,i(y, z).

In particular, we obtain

Φk,i(y, z) 6 Φj,i(y, y) + Φk,j(y, z) 6 Φj,i(y, y) + Φi,j(y, y) + Φk,i(y, z) = Φk,i(y, z),

thanks to the previous corollary. Therefore all inequalities are equalities and that
gives the result. �

Next, we derive a comparison principle for sub and supersolutions of the critical
weakly coupled system (3.1) which generalizes to our setting an analogous result
established in [6] for Hamiltonians of a special Eikonal form, see Subsection 6.1 for
more details. In particular, we obtain that A is a uniqueness set for the critical
system.

Theorem 5.5. Let v, u ∈
(
C(TN )

)m
be a sub and a supersolution of the critical

weakly coupled system (3.1), respectively. Assume that

for every x ∈ A there exists i ∈ {1, . . . ,m} such that vi(x) 6 ui(x). (5.1)

Then v(x) 6 u(x) for every x ∈ TN . In particular, two critical solutions that coin-
cide on A coincide on the whole TN .

Remark 5.6. The above theorem also implies that two critical solutions u and v are
actually the same if (5.1) holds with an equality. This is consistent with Proposition
5.1, which assures that this “boundary” condition amounts to requiring that u = v
on A.

Proof. In view of the density result stated in Theorem 4.2, the critical subsolution v
can be approximated from below by a sequence of critical subsolutions that are, in
addition, smooth and strict outside A. Indeed, just pick a sequence (wn)n∈N such
that ‖wn −v‖∞ < n−1 and then define vn = wn −n−1

1 which then verifies vn 6 v
and ‖vn − v‖∞ < 2n−1. Clearly, each element of the sequence still satisfies the
boundary condition (5.1), hence it is enough to prove the statement by additionally
assuming v smooth and strict in TN \ A.

Let us set M := max16i6mmaxTN (vi −ui), and pick a point x0 ∈ TN where such
a maximum is attained. By Theorem 2.3 we know that v(x0) = u(x0) +M1. If
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x0 6∈ A, then v1 would be a smooth subtangent to u1 at x0. The function u being a
supersolution, we would have

0 6 H1

(
x0, Dv1(x0)

)
+
(
B(x0)u(x)

)
1
= H1

(
x0, Dv1(x0)

)
+
(
B(x0)v(x)

)
1
,

in contrast with the fact that v is strict in TN \ A. Hence x0 ∈ A and by the
hypothesis (5.1) we get M 6 0, as it was to be proved. �

Last, we show that the trace of any critical subsolution on the Aubry set can be
extended to the whole torus in such a way that the output is a critical solution.

Theorem 5.7. For any v ∈ H(0), there exists a unique critical solution u such that
u = v on A.

Proof. The assertion is derived by setting ui(x) = supt>0

(
S(t)v

)
i
(x) for every x ∈

TN and i ∈ {1, . . . ,m}. Indeed, the functions {S(t)v : t > 0} are equi–Lipschitz
and non–decreasing with respect to t and satisfy S(t)v = v on A for every t > 0 by
Proposition 3.14. We infer that u is a vector valued, Lipschitz continuous function
and S(t)v ⇒ u in TN as t→ +∞. Last, u is a critical solution for it is a fixed point
of the semigroup S(t). �

6. Examples

The critical value and the Aubry set for a weakly coupled system of the kind
studied in this paper have, in general, no connections with those of each Hamiltonian,
considered individually. This happens also in simple situations, see Remark 6.1
below. In this section, we present some examples where more explicit results may
be obtained for the critical value and for the Aubry set. In what follows, the coupling
matrix B(x) will be always assumed irreducible and degenerate.

6.1. The setting of [6]. The first example we propose corresponds to the setting
considered in [6]. Assume that all the Hamiltonians are of the form Hi(x, p) =
Fi(x, p)− Vi(x), where:

(a) Fi and Vi take non–negative values;

(b) Fi is convex and coercive in p;

(c) Fi(x, 0) = 0 for all x ∈ TN and i ∈ {1, . . . ,m};
(d)

⋂m
i=1 V

−1
i ({0}) 6= ∅.

Under these hypotheses, we claim that the critical value is 0 and that the Aubry
set is nothing but

A =
m⋂
i=1

V −1
i ({0}).

Indeed, it is easily seen that the null function u0 always belongs to H(0). Therefore,
H(0) 6= ∅ and the critical value verifies c 6 0. To see that there is actually equality,
consider a point x0 ∈ ∩V −1

i ({0}) and any (C1) function u. By Proposition 1.3 we
know that B(x0)u(x0) must have a non–negative entry, say i, hence

Hi

(
x0, Dui(x0)

)
+
(
B(x0)u(x0)

)
i
= Fi

(
x0, Dui(x0)

)
+
(
B(x0)u(x0)

)
i
> 0.

Therefore, u cannot belong to a H(−ε) for a positive ε. The same argument can be
adapted in the viscosity sense for any (non necessarily C1) function. Therefore 0 is
the critical value.
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To prove that ∩V −1
i ({0}) is the Aubry set, first notice that, for every y 6∈

∩V −1
i ({0}), there exists an index j such that Vj(y) > 0. Then the j–th compo-

nent of the null function u0 is strict at y. In view of Theorem 3.13 we get the
inclusion A ⊆

⋂m
i=1 V

−1
i ({0}).

The opposite inclusion is obtained as previously. Take any u ∈ H(0) and x0 ∈
∩V −1

i ({0}). We will do as if u is differentiable at x0, but the argument carries on
in the general case using test functions and the viscosity subsolution property. At
x0 we must have

Fi

(
x0, Dui(x0)

)
+
(
B(x0)u(x0)

)
i
6 0 for every i ∈ {1, . . . ,m}.

But this is only possible if Fi(x0, Dui(x0)) = 0 for all i ∈ {1, . . . ,m} andB(x0)u(x0) =
0. Indeed, otherwise, B(x0)u(x0) will have a positive entry in view of Proposition
1.3, which is impossible. In particular, the above inequality holds with an equality.
Since this happens for any critical subsolution u, we get x0 ∈ A in view of Theorem
3.13. As a byproduct, this also establishes that at any point of A, any critical sub-
solution must take as value a vector belonging to R1. This is a particular case of
Proposition 5.1 and accounts for the type of symmetries already remarked in [6] for
the critical solutions obtained via the asymptotic procedure therein considered.

Remark 6.1. It would be interesting to understand what the Aubry set is for the
weakly coupled system considered in the previous example when condition (d) is
dropped. Unfortunately, we are not able to give an answer to this question. Note
that, in this case, c < 0. Indeed, if c were greater or equal than 0, then the
null function would satisfy condition (iii) in Theorem 3.13 at any point y ∈ TN ,
contradicting the fact that the Aubry set is nonempty. We point out that similar
examples appear in [28, Remark 3.5] and [32, Example 1.2].

6.2. The setting of [6] revisited. This second example is taken from [32]: the
Hamiltonians are still of the form Hi(x, p) = Fi(x, p) − Vi(x) with Fi as above,
but the quantities λi := minTN Vi are not required to be zero. The analogous
condition

⋂m
i=1 V

−1
i ({λi}) 6= ∅ is in force. Moreover, the coupling matrix is taken

independent of x. We claim that

c = −π(λ) and A =
m⋂
i=1

V −1
i ({λi}),

where λ = (λ1, . . . , λm) and π(λ) denotes the unique real number such that λ −
π(λ)1 ∈ Im(B). Indeed, by replacing each Hi with Hi + λi we reduce to the case of
Example 6.1 and we conclude by using the following result:

Proposition 6.2. Let Hi be convex and coercive Hamiltonians for every i ∈ {1, . . . ,m}
and assume that the coupling matrix is independent of x. For every λ = (λ1, . . . , λm),
denote by cλ and Aλ the critical value and Aubry set of the weakly coupled system
with Hi + λi in place of Hi for every i ∈ {1, . . . ,m}. Then

cλ = c0 + π(λ) and Aλ = A0 for every λ ∈ Rm,

where π(λ) denotes the unique real number such that λ− π(λ)1 ∈ Im(B).

Proof. Fix λ = (λ1, . . . , λm) ∈ Rm. Then λ = π(λ)1+Bµ for some µ ∈ Rm and for
a unique scalar π(λ), for Rm ∼= Ker(B)⊕ Im(B) in view of the results of Section 1.2.
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If u is a solution of the critical weakly coupled system associated with H1, . . . , Hm,
then w := u− µ is a solution of

Hi(x,Dwi)+λi+
(
Bw(x)

)
i
= c0+π(λ) in TN for every i ∈ {1, . . . ,m}, (6.1)

thus showing that cλ = c0 + π(λ). If we now take as u a subsolution of the critical
weakly coupled system associated with H1, . . . ,Hm which is strict outside A0, we
easily see that w := u− µ is a subsolution of (6.1) which is strict outside A0, thus
showing Aλ ⊆ A0. The reverse inclusion can be proved analogously. This concludes
the proof. �

6.3. Commuting Hamiltonians. In this last example we consider the case when
the Hamiltonians are strictly convex and pairwise commute. If the Hamiltonians are
of class C1, that means

{Hi, Hj}(x, p) :=
(∂Hi

∂p

∂Hj

∂x
− ∂Hj

∂p

∂Hi

∂x

)
(x, p) = 0 in TN × RN

for every i, j ∈ {1, . . . ,m}. If the Hamiltonians are only continuous, the commu-
tation hypothesis must be expressed in terms of commutation of their Lax–Oleinik
semigroup, see [12] for more details. We also make the additional assumption that,
individually, all the Hamiltonians have 0 as critical value. Then, we claim that 0 is
the critical value of the system as well (whatever the coupling is).

Indeed, it is proved in [12, 37] that the Hamiltonians have the same critical solu-
tions. In particular, there exists a function u ∈ Lip(TN ) satisfying

Hi(x,Du) = 0 in TN for every i ∈ {1, . . . ,m}

in the viscosity sense. Since the coupling is degenerate, we infer that the function
u0 = u1 is a solution of

Hi(x,Du
0
i ) +

(
B(x)u0(x)

)
i
= 0 in TN for every i ∈ {1, . . . ,m}.

Therefore, the claim is a direct consequence of Proposition 2.12. Moreover, in this
setting, we may localize the Aubry set of the system using those of the individual
Hamiltonians. In order to do so, let us recall another result from [12].

Theorem 6.3. Let H1, · · · ,Hm be pairwise commuting and strictly convex Hamil-
tonians, with common critical value equal to 0. Then they have the same Aubry set
A∗. Moreover, there exists a common critical subsolution v which is smooth outside
A∗ and strict for each Hamiltonian, i.e.

Hi

(
x,Dv(x)

)
< 0 for every x ∈ TN \ A∗ and i ∈ {1, . . . ,m}.

Using this theorem, we easily see that the inclusion A ⊆ A∗ holds. Indeed, the
function v(x) := v(x)1 is a critical subsolution for the system which is strict outside
A∗.

We also note that, as in the previous example, u(y) ∈ R1 for every y ∈ A and
every u ∈ H(0) in view of Proposition 5.1.

A particular case of this example is when all the Hi are equal. In this case we get
the more precise statement:

Proposition 6.4. Let H be a convex Hamiltonian and assume H1 = · · · = Hm = H.
Then A = A∗. Moreover, all critical solutions of the system are of the form u = u1
where u is a critical solution of H.
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Proof. The inclusion A ⊆ A∗ can be proved arguing as above (note that we do not
need the strict convexity assumption here). Let us prove the converse statement.
Pick v ∈ H(0) and set v(x) := maxi vi(x) for every x ∈ TN . We claim that v is a
critical subsolution for H. Indeed, let x ∈ TN and p ∈ D+v(x). Then v(x) = vi(x)
for some i ∈ {1, . . . ,m}. Since v > vi with equality at x, we get p ∈ D+vi(x). We
now use the fact that v is a subsolution of the system to get

H(x, p) 6 H(x, p) +
(
B(x)v(x)

)
i
6 0, (6.2)

where the first inequality comes from the fact that(
B(x)v(x)

)
i
=

m∑
j=1

bij(x)vj(x) >
m∑
j=1

bij(x)v(x) = 0,

which holds true since bij(x) 6 0 and vj(x) 6 v(x) for every j 6= i. Let us now
assume that v is strict outside A. Then the right inequality in (6.2) is strict as soon
as x /∈ A, yielding that v is a subsolution for H which is strict in the complementary
of A. This proves that A∗ ⊆ A, hence A = A∗.

Let now u be a critical solution for the system. Then v(x) := maxi vi(x) is a
critical subsolution for H. Moreover, as u(x) = u1(x)1 for every x ∈ A, we deduce
that v = u1 on A. Since A = A∗, there exists a critical solution ũ for H such that
ũ = v on A. Now the function ũ = ũ1 is a critical solution of the weakly coupled
system satisfying ũ = u on A. By the comparison principle, i.e. Theorem 5.5, we
conclude that u = ũ. �

Appendix A

In this appendix we give a proof of Proposition 2.8.

A function u defined in an open subset U of Rk will be said to be semiconcave if,
for every x ∈ U , there exists a vector px ∈ Rk such that

u(y)− u(x) 6 〈px, y − x〉+ d(y, x)ω
(
d(y, x)

)
for every y ∈ U ,

where ω is a modulus. It can be shown this is equivalent to requiring that for every
x, y ∈ U and λ ∈ [0, 1],

λu(x) + (1− λ)u(y) 6 u
(
λx+ (1− λ)y

)
+ λ(1− λ)ω

(
d(x, y)

)
.

The vectors px satisfying the above inequality are precisely the elements of D+u(x),
which is thus always nonempty in U . Moreover, ∂cu(x) = D+u(x) for every x ∈ U .
By the upper semicontinuity of the map x 7→ ∂cu(x) with respect to set inclusion, we
get in particular that Du is continuous in its domain of definition, see [7]. In what
follows, we will be in the case where U is an open subset of either TN or R+ ×TN .

We start with the following

Proposition A.1. Let T > 0 and G : [0, T ]× TN × RN → R be a locally Lipschitz
Hamiltonian such that G(s, ·, ·) is a strictly convex Hamiltonian, for every fixed
s ∈ [0, T ]. Let u(t, x) be a Lipschitz function in [0, T ]×TN that solves the evolutive
Hamilton-Jacobi equation

∂u

∂t
+G(t, x,Dxu) = 0 in (0, T )× TN , (A.1)

in the viscosity sense. Then

(i) for every 0 < τ < T , the function u is semiconcave in [τ, T )× TN ;
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(ii) if u(0, ·) is semi–concave in TN , then the functions {u(t, ·) : t ∈ [0, T ) } are
equi–semiconcave.

Proof. Since u is Lipschitz, up to modifying G outside [0, T ]× TN ×BR for a suffi-
ciently large R > 0, we can assume that G is superlinear in p, uniformly with respect
to (t, x). We are then in the setting considered by Cannarsa and Soner in [8] and
item (i) follows from their results.

Let us prove (ii). Let us denote by L(t, x, q) the the Lagrangian associated with G
through the Fenchel transform and by u0 the initial datum u(0, ·). It is well known,
see for instance [7], that the following representation formula holds:

u(t, x) = inf
ξ(t)=x

(
u0
(
ξ(0)

)
+

∫ t

0
L
(
s, ξ(s), ξ̇(s)

)
ds
)
, (t, x) ∈ (0, T )× TN , (A.2)

where the infimum is taken by letting ξ vary in the family of absolutely continuous
curves from [0, t] to TN . Moreover, the minimum is attained by some curve γ, which
is, in addition, Lipschitz continuous (actually, of class C1), see [10].

We claim that there exists a constant κ, only depending on G and on the Lipschitz
constant of u in [0, T ]×TN , such that ‖γ̇‖∞ 6 κ. To this aim, we apply Proposition
2.4 in [24] to the function u(t, x) and the curve s 7→ (s, γ(s)) to get

d

ds
u
(
s, γ(s)

)
= pt(s) + 〈px(s), γ̇(s)〉 for a.e. s ∈ [0, t], (A.3)

where s 7→
(
pt(s), px(s)

)
is a measurable and essentially bounded function on [0, t]

such that (
pt(s), px(s)

)
∈ ∂cu

(
s, γ(s)

)
for a.e. s ∈ [0, t].

By integrating (A.3) and using the Fenchel inequality we get

u(t, x) = u0
(
γ(0)

)
+

∫ t

0
pt(s) + 〈px(s), γ̇(s)〉ds

6 u0
(
γ(0)

)
+

∫ t

0
pt(s) +G

(
s, γ(s), px(s)

)
+ L

(
s, γ(s), γ̇(s)

)
ds

6 u0
(
γ(0)

)
+

∫ t

0
L
(
s, γ(s), γ̇(s)

)
ds,

where in the last inequality we used the fact that u is a (sub)–solution of the time
dependent equation, i.e.

pt +G(t, x, px) 6 0 for every (pt, px) ∈ ∂cu(t, x) and (t, x) ∈ (0, T )× TN .

Since γ is minimizing, all the inequalities must be equalities, in particular we obtain

γ̇(s) ∈ ∂pG
(
s, γ(s), px(s)

)
for a.e. s ∈ [0, t]. (A.4)

This proves the claim by choosing

κ := sup
{
|q| : q ∈ ∂pG(s, x, p), (s, x) ∈ [0, T ]× TN , |p| 6 Lip

(
u; [0, T ]× TN

) }
,

which is finite since G is bounded on compact subsets of [0, T ]×TN×RN and convex
in p.

Let us now fix t ∈ (0, T ), x1, x2 ∈ TN , λ ∈ [0, 1] and set x = λx1+(1−λ)x2. Note
that x1 = x+(1− λ)h and x2 = x− λh for h = x1 − x2. Let us denote by γ a curve
realizing the infimum in (A.2) for such a pair of (t, x), by K a Lipschitz constant
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for L restricted to [0, T ]×TN ×B(0, 2κ) and by ω a semi–concavity modulus for u0.
We get

λu(t, x1) + (1− λ)u(t, x2)− u(t, x)

6 λ
(
u0
(
γ(0) + (1− λ)h

)
+

∫ t

0
L
(
s, γ(s) + (1− λ)h, γ̇(s)

)
ds
)

+ (1− λ)
(
u0
(
γ(0)− λh

)
+

∫ t

0
L
(
s, γ(s)− λh, γ̇(s)

)
ds
)

−
(
u0
(
γ(0)

)
+

∫ t

0
L
(
s, γ(s), γ̇(s)

)
ds
)

= λu0
(
γ(0) + (1− λ)h

)
+ (1− λ)u0

(
γ(0)− λh

)
− u0

(
γ(0)

)
+ λ
(∫ t

0

(
L
(
s, γ(s) + (1− λ)h, γ̇(s)

)
− L

(
s, γ(s), γ̇(s)

))
ds

+ (1− λ)

∫ t

0

(
L
(
s, γ(s)− λh, γ̇(s)

)
− L

(
s, γ(s), γ̇(s)

))
ds

6 λ(1− λ)
(
ω(d(x1, x2)) + tKd(x1, x2)

)
,

which proves the assertion. �

The result just proved will be applied to weakly coupled systems as follows:

Proposition A.2. Let T > 0 and u = (u1, . . . , um) ∈
(
Lip([0, T ] × TN )

)m
be a

solution of the evolutionary weakly coupled system (1.3). Let B(x) be Lipschitz and
Hi be locally Lipschitz and strictly convex, for some fixed index i ∈ {1, . . . ,m}. Then,
for all 0 < τ < T , the function ui restricted to [τ, T )×TN is semiconcave. Moreover,
if, the initial condition ui(0, ·) is semiconcave, then the functions {ui(t, ·) : t ∈
[0, T ] } are equi–semiconcave.

Proof. The function ui solves, for the given index i ∈ {1, . . . ,m}, a Hamilton–
Jacobi equation of the kind (A.1) with G(t, x, p) = Hi(x, p) +

(
B(x)u(t, x)

)
i
, with

(t, x, p) ∈ [0, T ]× TN × RN .
The conclusion follows by applying Proposition A.1. �

We are now ready to prove Proposition 2.8.

Proof of Proposition 2.8. We recall that, by convexity of the Hamiltonians,
subsolutions to the critical system coincide with almost everywhere subsolutions.
This fact will be repeatedly exploited along the proof.

Assume first that t 7→ S(t)u + t a1 is non–decreasing. Pick t0 > 0 such that the
map (t, x) 7→ S(t)u(x) is differentiable at (t0, x) for almost every x ∈ TN and

∂tS(t0)u(x) > −a1 for a.e. x ∈ TN .

By the Lipschitz character of the map (t, x) 7→ S(t)u(x) and Fubini’s theorem, this
holds true for almost every t0 > 0. Using the evolutionary equation, which is verified
at every differentiability point of S(t)u(x), we deduce that, for every i ∈ {1, . . . ,m},

Hi

(
x,D

(
S(t0)u

)
i
(x)
)
+
(
B(x)S(t0)u(x)

)
i
6 a for a.e. x ∈ TN ,
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that is, S(t0)u ∈ H(a). This being true for almost every t0 > 0, the conclusion
follows by stability of viscosity subsolutions.

Let us now assume reciprocally that u ∈ H(a). We first approximate each Hamil-
tonian Hi with a sequence (Hk

i )k of convex Hamiltonians that are, in addition,
locally Lipschitz in (x, p) and strictly convex in p. This can be done by taking a
sequence (ρk)k of standard mollifiers on RN and by setting

Hk
i (x, p) =

∫
B1

ρk(y)Hi(x− y, p) dy +
|p|2

k
, (x, p) ∈ TN × RN .

Analogously, we approximate the matrix B(x) by a sequence of coupling matrixes(
Bk(x)

)
k
that are Lipschitz in x. Note that, for each index i ∈ {1, . . . ,m}, Hk

i ⇒
Hi in TN × RN and Bk ⇒ B in TN as k → +∞. Let us denote by Hk(a)
the set of a–subsolution of the weakly coupled system (1.2) with a = a1 and with
Hk

1 , . . . , H
k
m and Bk in place of H1, . . . , Hm and B, respectively, and by Sk the

semigroup associated with the corresponding time–dependent equation (1.3).
Next, we approximate u with a sequence of (un)n of functions that are component–

wise semi–concave by setting

uni (x) = inf
y∈TN

ui(y) + nd(y, x)2 for every x ∈ TN and i = 1, · · · ,m.

Fix ε > 0. A standard argument shows that, for n large enough, un ∈ H(a + ε).
Moreover, by the Lipschitz character of un and by the local uniform convergence of
(Hk

1 , . . . , H
k
m) to (H1, . . . ,Hm) and of Bk to B, we also have that un ∈ Hk(a + 2ε)

for k sufficiently large. We now apply Proposition A.2 to infer that the map (t, x) 7→
Sk(t)u

n(x) is semiconcave in [0, τ ]×TN for every τ > 0. By using the fact that the
gradient of a semiconcave function is continuous in its domain of definition and by
choosing τ > 0 small enough, we get Sk(t)u

n ∈ Hk(a+ 3ε) for every 0 6 t 6 τ . By
exploiting this information in the evolutive weakly coupled system, we get

∂

∂t
Sk(t)u

n(x) > −(a+ 3ε)1 for a.e. (t, x) ∈ (0, τ)× TN ,

i.e. Sk(t+ h)un > Sk(t)u
n − h(a+ 3ε)1 for every 0 < t < t+ h 6 τ .

Now, by the comparison principle for the evolution equation and by using the fact
that the semigroup commutes with the addition of scalar multiples of the vector 1,
we obtain that t 7→ Sk(t)u

n − t(a+3ε)1 is non decreasing. We now exploit the fact
that

Sk(t)u
n ⇒

k→+∞
S(t)un and S(t)un ⇒

n→+∞
S(t)u in R+ × TN

to infer that t 7→ S(t)un− t(a+3ε)1 is non–decreasing on [0,+∞). Being this true
for every ε > 0, we finally have that t 7→ S(t)un− ta1 is non–decreasing on [0,+∞).

The last assertion follows from the equivalence just proved, together with the fact
that the semigroup S(t) is non–decreasing and commutes with addition of vectors
of the form a1 with a ∈ R. �
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& Applications (Berlin) [Mathematics & Applications], Springer-Verlag, Paris, 1994.

29



[3] G. Barles and P. E. Souganidis, On the large time behavior of solutions of Hamilton-Jacobi
equations, SIAM J. Math. Anal., 31 (2000), pp. 925–939 (electronic).

[4] P. Bernard, Existence of C1,1 critical sub-solutions of the Hamilton-Jacobi equation on com-
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