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tIn this paper we study the relaxation of a 
lass of fun
tionals de�ned on distan
esindu
ed by isotropi
 Riemannian metri
s on an open subset of RN . We prove thatisotropi
 Riemannian metri
s are dense in Finsler ones and we show that the relaxedfun
tionals admit a spe
i�
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onvergen
e1 Introdu
tionIn this paper we study an integral fun
tional of the formF(da) := Z
 F (x; a(x)) dx; (1)de�ned on the family I of distan
es da indu
ed by isotropi
, 
ontinuous Riemannian metri
sthrough the formulada(x; y) := inf nLa(
) : 
 2 Lip([0; 1℄; 
); 
(0) = x; 
(1) = y o (2)for every (x; y) 2 
� 
, where the length fun
tional La is de�ned as followsLa(
) := Z 10 a(
(t))j _
(t)j dt: (3)Here a varies on the family of positive 
ontinuous fun
tions from 
 to the interval [�; �℄,where � and � are �xed positive 
onstants. Distan
es of this type have already been studiedin [6, 3℄ and, in a more geometri
 framework, in [8℄. The set I 
an be seen as a subspa
eof the spa
e of Finslerian distan
es D (see Se
tion 2) endowed with the metrizable topologygiven by the uniform 
onvergen
e on 
ompa
t subset of 
 � 
. It has been proved in[6℄ that the 
onvergen
e of a sequen
e (dn)n2N to d in this topology is equivalent to the�-
onvergen
e of the asso
iated length fun
tionals Ldn to Ld with respe
t to the uniform
onvergen
e of 
urves (see Se
tion 2 for de�nitions). The main problem arising in our studyis that I is not 
losed with respe
t to this topology. Indeed, one 
an build sequen
es of
ontinuous metri
s (an)n2N whi
h develop an os
illatory behavior in su
h a way that the1



indu
ed distan
es 
onverge to an element d whi
h do not belong to I (see [1℄). Therefore,it is natural to 
onsider the relaxed fun
tional of (1), namelyF(d) := infflim infn F(dn) : dn D�! d; (dn)n2N � Ig; (4)de�ned for every d belonging to the 
losure of I, where we have denoted by D�! the 
on-vergen
e with respe
t to the topology of D.In this paper we prove that the spa
e I is dense in D and, under suitable assumptionson the integrand F in (1), that the relaxed fun
tional (4), whi
h is therefore de�ned on thewhole D, has the following integral representation:F(d) = Z
 F (x;�d(x)) dx; (5)where �d(x) := supj�j=1 'd(x; �) and 'd is the Finslerian metri
 asso
iated to d by deriva-tion (see Se
tion 2).We 
on
lude this introdu
tion with some 
onsiderations. It is 
lear by the de�nition thatthe relaxed fun
tional F is lower semi
ontinuous. Moreover, it 
an be shown that it is thegreatest among all lower semi
ontinuous ones whi
h are bounded from above by F on I (see[4℄ for various results on this topi
). Therefore, in order to prove our relaxation result, wehave to show �rst that the fun
tional (5) is lower semi
ontinuous. The proof of this issueis just a te
hni
al adaptation of the arguments des
ribed in [5℄. To prove the maximalityof (5), we will approximate ea
h d 2 D by means of a sequen
e of suitably 
hosen distan
esdn 2 I, namely su
h thatlim supn Z
 F (x;�dn(x)) dx � Z
 F (x;�d(x)) dx:Then, by a standard argument (see Se
tion 4), the maximality of (5) follows.Indeed, �nding su
h an approximating sequen
e is a deli
ate matter. In fa
t, one shouldde�ne the Riemannian metri
s an in su
h a way to have �-
onvergen
e of the relative lengthfun
tionals Lan to L'd and this problem is not trivial even in the simpli�ed situation of anisotropi
 Riemannian metri
 'd, i.e. su
h that 'd = b(x)j�j where b is a Borel fun
tion from
 to [�; �℄. It is 
lear, in fa
t, that this 
onvergen
e strongly relies upon the 
onvergen
e ofthe approximating metri
s on 
urves, whi
h is mu
h �ner than 
onvergen
e almost every-where in 
. Moreover we do not have mu
h information on the properties of the metri
 'd;we only know it is Borel measurable and su
h that the asso
iated length fun
tional L'd islower semi
ontinuous with respe
t to the uniform 
onvergen
e of 
urves (see Se
tion 2). Inthe general 
ase of a non-isotropi
 metri
 the situation is obviously more deli
ate.The key idea of our proof is that it is suÆ
ient to 
ontrol the 
onvergen
e of the approximat-ing distan
es only on a �xed 
ountable and dense subset of 
�
 (Lemma 3.7). Therefore,when we de�ne the Riemannian metri
s, we have only to 
ontrol the value of the asso
iateddistan
e dn on the �rst n points of the 
ountable, dense subset. This will be done by ap-proximating the Finsler metri
 'd along geodesi
s (or, more pre
isely, quasi-geodesi
s, see(20)).The problem of the density of (smooth) isotropi
, Riemannian metri
s in Finsler ones hasalready been studied. The question was raised in [6℄, and partially answered in [3℄ under theadditional assumption that 'd is lower semi
ontinuous in the �rst variable. We remark thatour proof does not require any assumption on the Finsler metri
 and therefore 
ompletelyanswers to the question. Indeed, as pointed out in [3℄, on
e we have the density result for
ontinuous and isotropi
 Riemannian metri
s, the analogous result for smooth ones is easilyre
overed via a regularization argument (see Remark 4.4).2



We 
on
lude the paper by showing that every Finsler distan
e d 2 D 
an indeed be seen asgenerated by a suitable Borel measurable, isotropi
 Riemannian metri
 a : 
 ! [�; �℄ (a
-
ording to de�nition (28), see Proposition 4.8). In other words, by allowing the isotropi
 met-ri
 a to vary in a somehow \un
ontrolled" way, one 
an re
over all the possible anisotropiesof 'd.The paper is organized as follows: in Se
tion 2 we re
all the main notation used in thesequel and some results on Finsler metri
s, Se
tion 3 
ontains some preliminary lemmas andin Se
tion 4 we prove our main results.A
knowledgements.- The author wish to thank Giuseppe Buttazzo for having suggestedthe problem and for several useful dis
ussions on the subje
t.2 Notation and preliminaries on Finsler metri
sWe write here a list of symbols used throughout this paper.
 an open subset of RNSN�1 the unitary sphere of RNBr(x) the open ball in RN of radius r 
entred in xI the 
losed interval [0; 1℄LN the N�dimensional Lebesgue measureHN the N�dimensional Hausdor� measurejuj the Eu
lidean norm of the ve
tor u 2 RN�E the 
hara
teristi
 fun
tion of the set Eargmin(P) the set of minimizers of the problem (P)In this paper the letter N denotes an integer number greater or equal to 2. We will saythat a set ! is well 
ontained in 
 and we will write ! �� 
 to mean that its 
losure ! is
ontained in 
. With the word 
urve or path we will always indi
ate a Lips
hitz fun
tionfrom the interval I := [0; 1℄ to an open subset 
 of RN . Any 
urve 
 is always supposedto be parametrized by 
onstant speed, i.e. in su
h a way that j _
(t)j is 
onstant for L1-a.e.t 2 I . We will say that a sequen
e of 
urves (
n)n2N (uniformly) 
onverges to a 
urve 
 tomean that supt2I j
n(t)�
(t)j tends to zero as n goes to in�nity. We will denote by Lx;y thefamily of 
urves 
 whi
h join x to y, i.e. su
h that 
(0) = x and 
(1) = y. We remark thatif a sequen
e of 
urves (
n)n2N � Lx;y is su
h that supn R 10 j _
(t)jdt < +1 then, sin
e theyare all parametrized by 
onstant speed, we have that their �rst derivative is bounded fromabove. Therefore, by applying As
oli-Arzel�a theorem, we 
an �nd a 
urve 
 2 Lx;y su
hthat a subsequen
e (
ni)i2N 
onverges to 
. This argument will be widely used throughoutthe paper with no further explanation.The fun
tion F : 
 � [�; �℄ ! R appearing in the integrand of (1) is assumed to be
ontinuous and to ful�ll the following 
onditions:(i) the fun
tion F (x; �) is 
onvex and nonde
reasing for LN -a.e. x 2 
;(ii) R
 F (x; �) dx < +1. (6)We re
all the notion of �-
onvergen
e. Let (X; �) be a topologi
al spa
e satisfying the �rstaxiom of 
ountability at the point x 2 X . A sequen
e of fun
tionals Fn : X ! R is said to�-
onverge at x if �� lim inf Fn(x) = �� lim supFn(x);3



where � �� lim inf Fn(x) := inf f lim infn Fn(xn) : xn ��!x g�� lim supFn(x) := inf f lim supn Fn(xn) : xn ��!x g:De�nition 2.1. A Borel fun
tion ' : 
� RN ! [0;+1) is said to be a Finsler metri
 onthe open set 
 � RN if the fun
tion '(x; �) is positively 1-homogeneous for every x 2 
 and
onvex for LN -a.e. x 2 
.Given a Finsler metri
, we 
an de�ne a distan
e d' on 
 through the formulad' (x; y) := inf fL' (
) j 
 2 Lx;y g ; (7)where the Finslerian length fun
tional L' is de�ned byL'(
) := Z 10 '(
(t); _
(t))dt:A distan
e deriving from a Finsler metri
 through (7) is said to be of Finsler type. We willsay that a distan
e d is lo
ally equivalent to the Eu
lidean one if, for every x 2 
, thereexists an open neighborhood Ux and some positive 
onstants 
x; Cx su
h that 
xjx � yj �d(x; y) � Cxjx� yj for every y 2 Ux. We will say that a distan
e fun
tion is of geodesi
 typeif it satis�es the following identity:d(x; y) = inf nLd(
) j 
 2 Lx;yo for every (x; y) 2 
� 
; (8)where Ld (
) denotes the 
lassi
al d-length of 
, obtained as the supremum of the d-lengthsof ins
ribed polygonal 
urves:Ld(
) := supnXi d�
(ti); 
(ti+1)� : 0 = t0 < t1 < :: < tr = 1; r 2 No : (9)It 
an be easily shown by the de�nition thatProposition 2.2. The length fun
tional Ld is lower semi
ontinuous with respe
t to theuniform 
onvergen
e of paths, namely if (
n)n2N 
onverges to 
 thenLd(
) � lim infn!+1 Ld(
n):If the distan
e d is lo
ally equivalent to the Eu
lidean one, then it 
an be proved (
f.[8℄) that the length fun
tional Ld admits the integral representationLd(
) = Z 10 'd (
 (t) ; _
(t)) dtfor every 
urve 
, where 'd is the Finsler metri
 asso
iated to d by derivation, namely'd (x; �) := lim supt!0+ d (x; x+ t�)t (x; �) 2 
� RN :Denote by d
(x; y) the Eu
lidean geodesi
 distan
e in 
, that is d
 := da a

ording to(2), with a identi
ally equal to 1. We remark that d
 lo
ally 
oin
ides with the Eu
lideandistan
e. We �x two positive 
onstants �; � with � > � and we setM := f' Finsler metri
 on 
 : � j�j � ' (x; �) � � j�jg :Then we de�ne the family D of distan
es on 
 generated by the metri
s M, namely D :=fd' j ' 2 Mg. Obviously the set I, made up by distan
es da de�ned by (2) with a : 
 ![�; �℄ 
ontinuous, is trivially in
luded in D identifying a(x) with the metri
 a(x)j�j. It isalso evident that �d
 � d � � d
 for every d 2 D, so su
h distan
es are lo
ally equivalentto the Eu
lidean one. Moreover one 
an easily show the following result.4



Proposition 2.3. Let d := d' for some ' 2 M. Then Ld(
) � L'(
) for every 
urve 
.In parti
ular, d is a distan
e of geodesi
 type a

ording to de�nition (8).Remark 2.4. The inequality in the previous proposition may be stri
t. For example, take
 := [�1; 1℄�[�1; 1℄, � := f0g�[�1; 1℄ and a(x) := �
(x)+��(x). Then da(x; y) = jx�yj. Ifnow we take 
(t) := (0;�1=2)(1�t)+(0; 1=2)t, it is easily seen that Lda(
) = 1 < 2 = La(
).We endow D with the topology given by the uniform 
onvergen
e on 
ompa
t subset of
� 
. We will write dn D�! d to mean that the sequen
e (dn)n2N � D 
onverges to d 2 Dwith respe
t to this topology. It has been proved [6, Theorem 3.1℄ that this 
onvergen
e isequivalent to the �-
onvergen
e of the relative length fun
tionals with respe
t to the uniform
onvergen
e of paths. Moreover, we have the following result (
ompare to [5, Proposition 4℄and [6, Theorem 3.1℄):Proposition 2.5. Let 
 be an open subset of RN su
h that d
(x; y) � Crjx� yj for everyx and y in 
\Br(0) and every r > 0, where Cr is some positive 
onstant whi
h depends onr. Then D is a metrizable 
ompa
t spa
e.Throughout this paper we will always work with sets 
 whi
h satisfy the 
ondition statedin the proposition above. Therefore we will always assume that D is 
ompa
t. In parti
ular,this holds whenever 
 has a lo
ally Lips
hitz boundary.Given a distan
e d 2 D, we de�ne for every x 2 
�d(x) := supj�j=1'd(x; �); (10)whi
h represents, with analogy to the Riemannian 
ase 'd(x; �) = B(x)� � � with B(x) asymmetri
 and positive de�nite matrix, the largest \eigenvalue" of 'd(x; �) at the point x. Wenoti
e that �d(x) is a Lebesgue measurable fun
tion. Indeed, if (�n)n2N is a dense sequen
ein SN�1, we have that �d(x) 
oin
ides with the Borel measurable fun
tion supn 'd(x; �n) on
 nE, where E is the set of points where 'd(x; �) is not 
ontinuous. We know that 'd(x; �)is 
onvex for almost every x by de�nition of Finsler metri
, therefore E is LN -negligible andthe 
laim follows.3 Preliminary resultsIn this se
tion we prepare the tools whi
h will be used in the proof of our relaxation results.We re
all that the fun
tion F : 
 � [�; �℄ ! R is 
ontinuous and ful�lls 
onditions (6).We haveLemma 3.1. Let ('n)n2N � M su
h that d'n D�! d for some d 2 D. Then, for everybounded Borel set ! �� 
 and every � 2 SN�1, we haveZ! F (x; 'd(x; �)) dx � lim infn!1 Z! F (x; 'n(x; �)) dx :Proof : Let ! be a bounded Borel set well 
ontained in 
. Choose a bounded open setA �� 
 that 
ontains !. Arguing as in the proof of [5, Proposition 9℄, for every �xed� 2 SN�1 it is possible to �nd a subsequen
e of ('n)n2N and a sequen
e of positive numberstn ! 0 su
h that, for a.e. x 2 A,F (x; ' (x; �)) = limn!1�An(x)F �x; d'n (x; x+ tn�)tn � ; (11)5



where An := fx 2 A j dist(x; �A) > tng. Now, integrating (11) over ! and applying thedominated 
onvergen
e theorem, we get:Z! F (x; ' (x; �)) dx = limn!1 Z! �An(x)F �x; d'n (x; x+ tn�)tn � dx: (12)Sin
e d'n (x; x+ tn�) is less than or equal to the (Finslerian) length of the straight linesegment joining x and x+ tn�, we haved'n (x; x + tn�) � Z 10 'n (x+ stn�; tn�) ds:By the monotoni
ity and 
onvexity of the fun
tion F (x; �) for a.e. x we get, by using Jenseninequality, that for a.e. x 2 A,F �x; d'n (x; x + tn�)tn � � Z 10 F (x; 'n (x+ stn�; �))ds: (13)Combining (12) and (13), we obtainZ! F (x; ' (x; �))dx � lim infn!1 Z
�An\!(x) Z 10 F (x; 'n (x+ stn�; �))ds dx= lim infn!1 Z 10 Z
�An\! (x� stn�)F (x� stn�; 'n (x; �))dx ds= lim infn!1 Z! F (x; 'n (x; �))dx :The following two lemmas are analogous to [5, Lemma10, Lemma 11℄ and may be proved inthe same way, up to some te
hni
al adaptations.Lemma 3.2. Let ' 2M be a 
ontinuous Finsler metri
. Then, for every bounded open setA �� 
 and for every " > 0, there exists Æ > 0 su
h thatZDÆi\A F (x;�'(x)) dx � supj�j=1 ZDÆi\A [F (x; '(x; �)) + "℄ dx for all i 2 ZN;where we have set DÆi := 
 \ �i+ [�Æ; Æ)N �.Lemma 3.3. Let ' 2 M su
h that '(x; �) is 
onvex for every x 2 
. Then for everybounded open set A �� 
 and for every " > 0 there exists a 
ompa
t set K" � A su
h thatLN (A nK") < " and ' is 
ontinuous on K" � RN .By using the previous lemmas we 
an prove the followingProposition 3.4. Let ' 2 M. Assume that, for a sequen
e (�n)n2N of nonnegative Borelmeasures on 
, the following property holds:supj�j=1 Z! F (x; '(x; �)) dx � lim infn!1 �n (!) for every Borel set ! �� 
 :Then Z
 F (x;�'(x)) dx � lim infn!1 �n (
) : (14)6



Proof : Let (
l)l2N be a sequen
e of bounded open sets well 
ontained in 
 su
h that
l � 
l+1 and 
 = Sl2N
l. We �rst remark that it is suÆ
ient to prove that (14) holdsfor 
 := 
l for every l 2 N. Then, the 
laim is easily obtained by adapting the proof givenin [5, Proposition 12℄ and by using Lemmas 3.1, 3.2 and 3.3.Next, we show some results on Finsler metri
s. We start by the followingProposition 3.5. Let ' 2 M and d := d'. Then(i) 'd(x; �) � '(x; �) for a.e. x 2 
 and for every � 2 RN . In parti
ular �d(x) �supj�j=1 '(x; �) for a.e. x 2 
;(ii) if '(x; �) := a(x)j�j with a : 
 ! [�; �℄ lower semi
ontinuous, then 'd(x; �) � a(x)j�jfor every (x; �) 2 
� RN . In parti
ular a(x) = �d(x) for a.e. x 2 
.Proof : Let us �x a � 2 SN�1. For every x 2 
 let us de�ne the 
urve 
x(t) := x + t�.Then by Proposition 2.3 we have thatLd(
x) := Z 10 'd(
x; �) dt � Z 10 '(
x; �) dt =: L'(
x):Therefore we dedu
e that 'd(x; �) � '(x; �) for a.e. x 2 
. Then we 
an take a densesequen
e (�n)n2N in SN�1 and repeat the argument above for ea
h �n. Re
alling that thefun
tions 'd(x; �) and '(x; �) are 
ontinuous and 1-homogeneous for a.e. x 2 
, we eventuallyget, by the density of (�n)n2N, that 'd(x; �) � '(x; �) for a.e. x 2 
 and for every � 2 RN .In parti
ular we get �d(x) � supj�j=1'(x; �) a.e. in 
: (15)Let us now take '(x; �) := a(x)j�j with a lower semi
ontinuous. Then we have, by thelower semi
ontinuity, that a(x) = supr>0 �infBr(x) a�. Therefore for every �xed x 2 
 andfor every " > 0 there exists r" > 0 su
h that Br"(x) � 
 and a(y) � a(x) � " for everyy 2 Br"(x). Let us �x a � 2 SN�1 and take 0 < t < �r"=(2�). Choose a d-minimizingsequen
e (
n)n2N � Lx;x+t� su
h that La(
n) � d(x; x + t�) + �r"=2 for every n. Then the
urves 
n lie within Br"(x). In fa
t for every n and for every s � 1:�j
n(s)� xj � Z s0 a(
)j _
njd� � d(x; x + t�) + �r"=2 � �d
(x; x+ t�) + �r"=2 < �r";where we have used the fa
t that d
(x; y) = jx� yj if y 2 Br"(x). Then we have for every nLa(
n) := Z 10 a(
n)j _
nj d� � (a(x)� ") Z 10 j _
nj d� � (a(x) � ")tand letting n go to in�nity we obtaind(x; x + t�)t � a(x)� ": (16)By passing to the limsup in (16) as t ! 0 and sin
e " > 0, x 2 
 and � 2 SN�1 werearbitrary we obtain 'd(x; �) � a(x) for every (x; �) 2 
� SN�1 (17)and the 
laim follows by the 1-homogeneity of 'd(x; �). In parti
ular, by taking the sup ofthe left-hand side of (17) over all � 2 SN�1 and by using (15) we get that �d(x) = a(x) fora.e. x 2 
. 7



Remark 3.6. If a and b are two 
ontinuous isotropi
 metri
s whi
h give rise to the samedistan
e fun
tion d through (2), then a(x) = b(x) for every x in 
. In fa
t, by point (ii) ofthe stated lemma, we have that the previous equality holds almost everywhere, and thereforeeverywhere by the 
ontinuity of the metri
s. In parti
ular, this shows that the fun
tional(1) is well de�nite.The key idea used in the proof of the density result is stated in the followingLemma 3.7. Let (dn)n2N be a sequen
e 
ontained in D whi
h 
onverges pointwise to somed 2 D on a dense subset of 
� 
. Then dn D�! d.Proof : By the 
ompa
tness of D, we already know that there is a subsequen
e (dnk)k2Nsu
h that dnk D�! Æ for some Æ 2 D. By the pointwise 
onvergen
e we get that Æ(x; y) =d(x; y) on a dense subset of 
 � 
 and therefore Æ 
oin
ides with d sin
e they are both
ontinuous fun
tions. If the whole sequen
e did not 
onverge uniformly (on 
ompa
t subsetof 
� 
) to d, by the 
ompa
tness of D there would exists a subsequen
e whi
h 
onvergesto some Æ 2 D with Æ 6= d. By arguing as above, this would lead to a 
ontradi
tion.The next result shows that the monotone 
onvergen
e of metri
s implies the 
onvergen
e ofthe indu
ed distan
es.Lemma 3.8. Let ('n)n2N be a sequen
e in M su
h that for every (x; �) 2 
�RN 'n(x; �)
onverge in
reasingly (resp. de
reasingly) to '(x; �) for some ' 2M. Then d'n D�! d'.Proof : By Lemma 3.7 it is suÆ
ient to prove that (d'n)n2N 
onverges pointwise to d'.We start by 
onsidering the 
ase of an in
reasing sequen
e of metri
s. By the monotoni
ityof 'n we obviously have that L'(
) � L'n(
) � L'n�1(
) for every 
urve 
 and therefore(d'n(x; y))n2N is an in
reasing sequen
e and d'(x; y) � supn d'n(x; y) for every (x; y) 2
 � 
. To prove the reverse inequality, let us take a sequen
e of 
urves (
n)n2N � Lx;ysu
h that L'n(
n) � d'n(x; y) + 1=n. Sin
e the fun
tionals L'n are equi-
oer
ive (in fa
tL'n(
) � � R 10 j _
jdt for every n), we may �nd a subsequen
e (
ni)i2N whi
h 
onvergesuniformly to some 
urve 
 2 Lx;y. Now, by [7, Remark 5.5℄, we know that the fun
tionalsL'ni �-
onverge to L' with respe
t to the uniform 
onvergen
e of path and therefore wehave d'(x; y) � L'(
) � lim infi!+1 L'ni (
ni) � lim infi!+1 d'ni (x; y) = supn d'n(x; y):Sin
e (x; y) 2 
� 
 was arbitrary the 
laim follows.The proof in the 
ase of a de
reasing sequen
e of metri
s is even simpler. In fa
t, bymonotoni
ity we get d'(x; y) � infn d'n(x; y) for every (x; y) 2 
�
. To show the reverseinequality, take a 
urve 
 2 Lx;y. By the monotone 
onvergen
e theorem and by thede�nition of d'n(x; y) we haveL'(
) = infn L'n(
) � infn d'n(x; y);and the 
laim easily follows by taking the in�mum over all 
urves in Lx;y.We end this se
tion with the proof of two lemmas whi
h will be useful in the sequel.Lemma 3.9. Let f
i j 
i 2 Lxi;yi ; i � ng be a �nite 
olle
tion of 
urves su
h thatd(xi; yi) � Ld(
i) � d(xi; yi) + 1n (18)for some �xed points (xi; yi) 2 
 � 
 and for some n 2 N. Then it is possible to �nd afamily of 
urves f~
i j ~
i 2 Lxi;yi ; i � ng still satisfying (18) and su
h that8



(i) ~
i is inje
tive for every i � n;(ii) ~
i(I) \ ~
j(I) is a (possibly void) disjoint �nite union of 
losed ar
s for every 1 � i �j � n.Proof : Let N be a 1-re
ti�able 
losed set su
h that N � [i�n
i. First we remark thatfor every i � n the set Ri := argminfLd(
) j 
 2 Lxi;yi ; 
(I) � Ngis non-void. Indeed, the 
lass of 
urves on whi
h we minimize Ld is non-void, as it 
ontains
i, and 
losed with respe
t to the uniform 
onvergen
e of 
urves, as N is 
losed, thereforeit 
ontains an a

umulation point ~
i of a minimizing sequen
e. Su
h a 
urve is of minimald-length by the lower semi
ontinuity of Ld and so it belongs to Ri. Moreover, it is inje
tiveand satis�es (18) by minimality.The proof of the lemma is by indu
tion on n. For n = 1 the 
laim is satis�ed by 
hoosing a~
1 whi
h belongs to R1. Let us then suppose the 
laim satis�ed up to n�1 and let us proveit for n. By indu
tion we may �nd 
urves ~
i 2 Ri for i � n � 1 su
h to satisfy the 
laim.Let us 
hoose a 
urve � in Rn. For every j � n� 1 let us set tj := minft 2 I j�(t) 2 ~
j(I) gand Tj := maxft 2 I j�(t) 2 ~
j(I) g. Up to reordering the 
urves ~
j , we 
an suppose thatt1 = minftj j j � n � 1 g. Then we de�ne �1 2 Lxn;yn to be the 
urve obtained by movingfrom �(0) to �(t1) along �, from �(t1) to �(T1) along ~
1 and from �(T1) to �(1) along� again. Remark that, by minimality, ~
1 is a path whi
h 
onne
ts �(t1) to �(T1) in theshortest way among all those 
ontained in N and so we have not in
reased the length, i.e.Ld(�1) � Ld(�) and �1 2 Rn. Moreover �1([0; T1℄) \ ~
i(I) is a disjoint �nite union of 
losedar
s for every 1 � i � n� 1. Then we set � := �1 j[T1;1℄ and we repeat the argument aboveto obtain a �2 : [T1; 1℄! N . By iterating this pro
edure we eventually �nd a �nite numberof 
urves f�h j 1 � h �Mg for some M < n. Then we de�ne~
n(t) :=8<: �1(t) if t 2 [0; T1℄�h(t) if t 2 [Th�1; Th℄ and 1 < h < M�M (t) if t 2 [TM�1; 1℄:By what previously observed, we have that ~
n still belongs to Rn and is therefore inje
tiveby minimality. Moreover, it is su
h that ~
n(I)\ ~
i(I) is a disjoint �nite union of 
losed ar
sfor every i � n� 1 by 
onstru
tion. The 
laim is thus proved.Lemma 3.10. Let 
 be an inje
tive 
urve, � := 
((0; 1)) � 
 and a : 
 ! [�; �℄ a Borelfun
tion. Then there exists a sequen
e of 
ontinuous fun
tions �k : � ! [�; �℄ su
h that�k(x) 
onverge to a(x) for H1-a.e. x 2 �. Moreover, for every " > 0 there exists a Borelsubset B" � � su
h that H1(� nB") < " and �k 
onverge uniformly to a on B".Proof : The fun
tion aÆ
 : (0; 1) ! [�; �℄ is Borel measurable, therefore there exists asequen
e (fk)k2N of 
ontinuous fun
tions fk : (0; 1) ! [�; �℄ su
h that fk(t) 
onverges toaÆ
(t) for a.e. t 2 (0; 1). Moreover, by Severini-Egoro�'s theorem [9, Se
tion 1.2, Theorem3℄, for every " > 0 there exist an in�nitesimal sequen
e (Æk)k2N and a Borel set E" su
h thatH1((0; 1) n E") < " and jfk(t) � aÆ
(t)j < Æk for every t 2 E". The 
laim then follows bysetting �k(x) := fk(
�1(x)) and B" := 
(E").4 Main resultsOur main result is stated as follows. 9



Theorem 4.1. Let F be the fun
tional de�ned on I by (1), where F : 
 � [�; �℄ ! R is
ontinuous and satis�es 
onditions (6). Then its relaxed fun
tional (4) has the followingintegral representation: F(d) = Z
 F (x;�d(x)) dx (19)for all d 2 D.The proof of the theorem above is based on the following two results whi
h we state sepa-rately.Theorem 4.2. If dn D�! d, then lim infn!+1 Z
 F (x;�dn(x)) dx � Z
 F (x;�d(x)) dx.Theorem 4.3. The family I of distan
es indu
ed by 
ontinuous and isotropi
 Riemannianmetri
s is dense in D. Moreover, for every d 2 D we 
an 
hoose a sequen
e (dn)n2N � Isu
h that dn D�! d andlim supn!+1 Z
 F (x;�dn(x)) dx � Z
 F (x;�d(x)) dx:Remark 4.4. The 
lass of distan
es indu
ed by smooth isotropi
 Riemannian metri
s isdense in I. Therefore, by the theorem just stated, smooth isotropi
 Riemannian metri
s aredense in the 
lass of Finsler metri
s. In fa
t, let us take a distan
e d in I. Then d = dafor some 
ontinuous metri
 a : 
 ! [�; �℄. We may extend a to the whole Rn by settinga identi
ally equal to � outside 
. Then, by taking a sequen
e of 
onvolution kernels �n,we de�ne the sequen
e of smooth isotropi
 metri
s an : 
 ! [�; �℄ by regularization, i.e.an(x) := �n �a(x), and we 
all dn the indu
ed distan
es. Sin
e the fun
tions an 
onverge toa uniformly on 
ompa
t subset of 
�
, it 
an be easily shown that the length fun
tionalsLan �-
onverge to La with respe
t to the uniform 
onvergen
e of 
urves. Then, by [6,Theorem 3.1℄, we have that dn D�! d (this 
ould also have been proved dire
tly by using theequi-
oer
ivity of the length fun
tionals to show that the above 
onvergen
e of distan
es ispointwise and then applying Lemma 3.7).On
e Theorem 4.2 and Theorem 4.3 are proved, the proof of Theorem 4.1 will triviallyfollows. In fa
t, Theorem 4.2 gives that the fun
tional (19) is lower semi
ontinuous withrespe
t to the uniform 
onvergen
e of distan
es, and Theorem 4.3 implies it is the greatestlower semi
ontinuous fun
tional de�ned on D whi
h is bounded from above by F on I. Infa
t, let G be another 
andidate and let d 2 D. Choose a sequen
e (dn)n2N � I as in thestatement of Theorem 4.3. We haveG(d) � lim infn!+1 G(dn) � lim infn!+1F(dn) � lim supn!+1 F(dn) � Z
 F (x;�d(x)) dx;hen
e the 
laim. We remark that by Proposition 3.5 the fun
tional (19) a
tually 
oin
ideswith F on I.Let us then start by proving Theorem 4.2.Proof of Theorem 4.2: By applying Lemma 3.1 with 'n := 'dn , we obtainsupj�j=1 Z! F (x; 'd(x; �)) dx � lim infn!1 Z! F (x;�dn(x)) dx:The 
laim then follows by applying Proposition 3.4 with �n(!) := R! F (x;�dn(x)) dx.10



Remark 4.5. The proof above still works for slightly more general fun
tionals. Indeed, itis suÆ
ient that there exists a sequen
e of 
ontinuous fun
tions Fk : 
� [�; �℄ ! R whi
hsatisfy 
onditions (6) and su
h that F (x; �) = supk Fk(x; �) for LN -a.e. x 2 
 and for every� 2 RN . In fa
t, one 
an apply the argument above to ea
h Fk to getZ! Fk (x;�d(x)) dx � lim infn!1 Z! F (x;�dn(x)) dx;and the 
laim immediately follows by taking the supremum over k of the left-hand side termand by the monotone 
onvergen
e theorem.We now 
ome to the proof of Theorem 4.3. The proof is essentially divided in two steps: �rst,we approximate a given d 2 D with distan
es indu
ed by a sequen
e of Borel measurableand isotropi
 Riemannian metri
s, then we approximate ea
h distan
e of the sequen
e bymeans of distan
es in I.Proposition 4.6. Let d 2 D. Then there exists a sequen
e of Borel measurable isotropi
metri
s an : 
! [�; �℄ su
h that(i) dan D�! d;(ii) an(x) = �d(x) for a.e. x 2 
.Proof : By Lemma 3.7, it is suÆ
ient to de�ne the fun
tions an in su
h a way thatthe generated distan
es dan 
onverges pointwise to d on a dense subset of 
 � 
. Let usstart then by setting S := QN \ 
. Obviously S � S is dense in 
 � 
 and 
ountable,so we write S � S := f(xi; yi) j i 2 Ng. For ea
h (xi; yi) we take a d-minimizing sequen
e(
in)n2N � Lxi;yi , i.e. su
h thatd(xi; yi) � Ld(
in) � d(xi; yi) + 1n: (20)By Lemma 3.9, the 
urves 
in 
an be 
hosen in su
h a way to satisfy 
onditions (i) and (ii)of the mentioned lemma (this assumption is not really needed here, but will be important inthe proof of Theorem 4.3). By 
ondition (ii), ea
h non-empty set 
in(I) \ 
jn(I) is a disjoint�nite union of 
losed ar
s. Let us denote by Tn the �nite set given by the extreme points ofsu
h ar
s for every 1 � i � j � n and set Nn := [i�n
in(I). Let �n be a Borel H1-negligiblesubset of Nn whi
h 
ontains the points where the 1-re
ti�able set Nn is not di�erentiable(this is possible by the regularity of the measure H1 and by the di�erentiability propertyof re
ti�able sets [10, Theorem 1.6, Theorems 3.8 and 3.14℄). Then we de�ne the fun
tionan : 
! [�; �℄ by an(x) := 8<: �d(x) if x 2 
 nNn� if x 2 �n [ Tn'd(x; �x) if x 2 Nn n (�n [ Tn) (21)where �x is the unitary tangent to Nn at the point x. It is not diÆ
ult to prove that an isBorel-measurable. Moreover it is 
lear that an satis�es point (ii) of the Proposition.We remark that, by [8, Corollary 2.7℄, we have that 'd(x; �x) = 'd(x;��x) for H1-a.e.x 2 Nn. By possibly enlarging the set �n we may suppose that this holds everywhere onNn n�n. Moreover, if x = 
ni (t) and 
ni is di�erentiable in t, we have that _
ni (t) is parallelto �x and therefore 'd(
ni (t); _
ni (t)) = 'd(
ni (t); �x)j _
ni (t)j = an(
ni (t))j _
ni (t)j.11



Let dan be the distan
es generated by su
h fun
tions an. In order to prove point (i), weshow that the distan
es dan 
onverge pointwise to d on S�S. We 
laim that for every i � nwe have d(xi; yi) � dan(xi; yi) � d(xi; yi) + 1n:Let us �x an i � n and let us prove the se
ond inequality. By the above remark and by (20)we have dan(xi; yi) � Z 10 an(
in)j _
inj dt = Z 10 'd(
in; _
in) dt � d(xi; yi) + 1n:To prove the �rst inequality, 
hoose a 
urve � 2 Lxi;yi and for every i � n set Ii := ft 2I j�(t) 2 
in(I)g and I0 := I n[i�nIi. We remark that the ve
tor _�(t) is parallel to ��(t) a.e.on ea
h Ii and so an(�)j _�j = 'd(�; _�) a.e. on Ii. Therefore we haveLan(�) = Z 10 an(�)j _�j dt = nXi=1 ZIi an(�)j _�j dt+ ZI0 an(�)j _�j dt� nXi=1 ZIi 'd(�; _�) dt+ ZI0 'd(�; _�) dt � d(xi; yi);where we have used the fa
t that an(�)j _�j � 'd(�; _�) on I0. By passing to the in�mum overall possible 
urves � 2 Lxi;yi we get the 
laim.Proof of Theorem 4.3. The proof is organized in two steps.Step 1. We �rst remark that the 
losure of I 
ontains the family of distan
es generatedby lower semi
ontinuous isotropi
 Riemannian metri
s. In fa
t, let b : 
! [�; �℄ be a lowersemi
ontinuous metri
. It is well known that b(x) = supn2N ~an(x) for suitable 
ontinuousfun
tions ~an (and we may as well suppose that � � ~an � � by possibly repla
ing thefun
tion ~an with ~an _�). Setting an(x) := supi�n ~ai(x), we have that dan D�! db by Lemma3.8. Moreover, by Proposition 3.5 we have that �db(x) = b(x) and �dan (x) = an(x) almosteverywhere on 
 and therefore, by the monotone 
onvergen
e, we get thatlim supn Z
 F (x;�dan (x)) dx = Z
 F (x;�b(x)) dx:To prove the theorem, it is then suÆ
ient to �nd a sequen
e of lower semi
ontinuous metri
sbn : 
 ! [�; �℄ su
h that the generated distan
es dbn satisfy the 
laim of the theorem. In-deed, by 
ombining the idea just des
ribed with a diagonal argument, the 
on
lusion wouldfollow at on
e.Step 2. To get the desired approximation of the distan
e d 2 D via lower semi
ontinuousisotropi
 metri
s, it is enough to prove that, for every �xed n 2 N there exists a sequen
e oflower semi
ontinuous isotropi
 metri
s bk : 
! [�; �℄ su
h that(i) d(xi; yi) � lim supk!+1 dbk(xi; yi) � d(xi; yi) + 1n for every i � n;(ii) lim supk!+1 Z
 F (x; bk(x)) dx � Z
 F (x; an(x)) dx12



where an are the Borel isotropi
 metri
s built in the proof of Proposition 4.6.In fa
t the desired sequen
e of lower semi
ontinuous metri
s is then obtained via a diagonalargument and taking into a

ount that an(x) = �d(x) almost everywhere on 
 by Proposi-tion 4.6.Keeping the notation used in the proof of Proposition 4.6, we observe that the set NnnTnis a �nite, disjoint union of open ar
s. Therefore, by applying Lemma 3.10 to ea
h ar
, we
an �nd a sequen
e of 
ontinuous fun
tions �k : Nn n Tn ! [�; �℄ whi
h 
onverge to an H1-a.e. on Nn nTn. Let us set Ak := fx 2 
 j dist(x;Nn) < 1=kg. Let (
k)k2N be a sequen
e ofbounded open sets well 
ontained in 
 su
h that 
k � 
k+1 and 
 = Sk2N
k. By Lusin'stheorem we may �nd a sequen
e of 
losed set Kk � 
k n Ak su
h that a jKk is 
ontinuousand Ln((
k nAk) nKk) < 1=k. Then we de�ne bk : 
! [�; �℄ bybk(x) := 8>><>>: �k(x) if x 2 Nn n Tn� if x 2 Tnan(x) if x 2 Kk� elsewhere. (22)Noti
e that bk is lower semi
ontinuous. Moreover we havelim supk!+1 Z
 F (x; bk(x)) dx = lim supk!+1  ZKk F (x; an(x)) dx+ Z
nKk F (x; �) dx! : (23)Re
alling that F (x; �) is summable over 
 (
ondition (ii) of (6)), we have that the se
ondintegral in the right-hand side of (23) goes to zero. In fa
tZ
nKk F (x; �) dx = Z
n
k F (x; �) dx+ Z
knKk F (x; �) dx; (24)and the �rst and se
ond term of the right-hand side of (24) go to zero, respe
tively by thedominated 
onvergen
e theorem and the absolute 
ontinuity of the integral. Thereforelim supk!+1 Z
 F (x; bk(x)) dx � Z
 F (x; an(x)) dx;so point (ii) of the 
laim is satis�ed.Let us show now that (i) holds. We start by proving the se
ond inequality. For i � n wehave by de�nition dbk (xi; yi) � Lbk (
ni ) = Z 10 �k(
ni )j _
ni j dt;therefore by the dominated 
onvergen
e theorem we getlim supk!+1 dbk (xi; yi) � lim supk!+1 Z 10 �k(
ni )j _
ni j dt = Z 10 an(
ni )j _
ni j dt= Z 10 'd(
ni ; _
ni ) dt � d(xi; yi) + 1n: (25)To prove the �rst inequality let us take for every k 2 N a 
urve 
k 2 Lxi;yi su
h thatdk(xi; yi) � Lbk(
k) � dk(xi; yi) + 1k : (26)13



On
e again, we remark that, by Lemma 3.9, it is not restri
tive to suppose that su
h 
urvesare inje
tive. Sin
e � RI j _
kj dt � Lbk(
k), by (26) and (25) we get that lim supk RI j _
kj dt <+1. Let us 
hoose an " > 0. By applying Lemma 3.10 to ea
h open ar
 of Nn n Tn,we 
an �nd a Borel set B" � Nn n Tn and an in�nitesimal sequen
e of positive numbers(Æk)k2N su
h that H1(Nn n B") < " and j�k(x) � an(x)j < Æk for every x 2 B". Let us setIk := ft 2 I j
k(t) 2 Nn nB"g. Then bk(
k) � an(
k)� Æk a.e. on I n Ik . Let us writeLbk(
k) = ZIk bk(
k)j _
kjdt+ ZInIk bk(
k)j _
kjdt:We remark that, as 
k(Ik) � Nn nB" for every k 2 N, by the Area-formula we haveZIk j _
kj dt = H1(
k(Ik)) � H1(Nn nB") < ":Taking into a

ount this remark we getZIk bk(
k)j _
kjdt = ZIk an(
k)j _
kjdt+ ZIk (bk(
k)� an(
k))j _
k jdt� ZIk an(
k)j _
kjdt� (� � �)":Then we have Lbk(
k) � Z 10 an(
k)j _
kj dt� Æk ZInIk j _
kj dt� (� � �)"� dan(xi; yi)� Æk Z 10 j _
kj dt� (� � �)"and therefore, as Æk R 10 j _
kj dt goes to zero, we obtainlim supk!+1 dbk (xi; yi) � lim supk!+1 Lbk (
k) � dan(xi; yi)� (� � �)":The 
laim then follows sin
e " was arbitrary.Remark 4.7. It should be noti
ed that the proof of Theorem 4.3 holds under very generalassumptions on the fun
tion F , namely it is suÆ
ient to take an F whi
h is Borel measurableand satis�es assumption (ii) of (6), and su
h that the fun
tion F (x; �) is non-de
reasing forLN -a.e. x 2 
. This 
onsideration, together with Remark 4.5, enables us to 
on
lude thatour relaxation result, namely Theorem 4.1, holds under the following milder 
onditions onF : 
� [�; �℄! R:(i) there exist a sequen
e of 
ontinuous fun
tions Fk : 
� [�; �℄! R satisfying 
onditions(6) and su
h that F (x; �) = supk2NFk(x; �) for LN -a.e. x 2 
, for every � 2 RN ;(ii) R
 F (x; �) dx < +1.With a slight modi�
ation of the argument used in the proof of Proposition 4.6 we 
anprove the following result.
14



Proposition 4.8. Let d 2 D. Then there exists a Borel fun
tion a : 
 ! [�; �℄ su
h that,for every (x; y) 2 
� 
,d(x; y) = inf nZ 10 a(
(t))j _
(t)j dt : 
 2 Lip([0; 1℄; 
); 
(0) = x; 
(1) = y o:In parti
ular, if 
 := RN , for every d 2 D there exists a Borel measurable, isotropi
 Rie-mannian metri
 a : RN ! [�; �℄ su
h that d = da a

ording to de�nition (2).Proof : Let us �rst remark that one 
an think the distan
e d 2 D to be de�ned on
 � 
 by extending it 
ontinuously up to the boundary. Therefore the d-length of everypath 
 : I ! 
 is de�ned, a

ording to de�nition (9). Let us de�ne the metri
 derivative ofthe path 
 at the point t 2 I asmdd(
)(t) := limh!0 d(
(t+ h); 
(t))h : (27)It is well known (see [2℄ for instan
e) that the limit in (27) exists for L1-a.e. t 2 I and thatLd(
) = Z 10 mdd(
)(t) dt:Noti
e also that, if 
(t) 2 
, then mdd(
)(t) = 'd(
(t); _
(t)), as one 
an easily show
omparing the de�nitions of 'd and mdd and re
alling that lo
ally �jx � yj � d(x; y) ��jx � yj. Moreover, we observe that a Borel fun
tion a : 
 ! [�; �℄ indu
es a distan
e Æaon 
 through the formulaÆa(x; y) := inf nZ 10 a(
(t))j _
(t)j dt : 
 2 Lip([0; 1℄; 
); 
(0) = x; 
(1) = y o (28)for every (x; y) 2 
�
.Comparing the de�nition of Æa with the one of da given in (2), we see that the maindi�eren
e relies upon the fa
t that the 
urves on whi
h we minimize the length La are nowallowed to lye in the 
losure of 
, therefore Æa depends also from the values assumed bya on the boundary of 
. In parti
ular, we remark that in general Æa(x; y) � da(x; y) for(x; y) 2 
 � 
, and this inequality may be stri
t due to the fa
t that a is not 
ontinuous.For instan
e, take 
 := (�1; 1) � (�1; 1) and a(x) := �
(x) + �
(x). One 
an easily seethat points near the boundary of 
 are 
loser with respe
t to Æa sin
e also the boundary of
 
an be used to 
onne
t points in de�nition (28).Let us now set S := QN \ 
 and write S � S = f(xi; yi) j i 2 Ng. By the lowersemi
ontinuity of Ld, we have that for every i 2 N there exists a 
urve 
i : I ! 
 su
hthat Ld(
i) = d(xi; yi) (just take for 
i an a

umulation point of a d-minimizing sequen
eof 
urves in 
 whi
h 
onne
t x and y). Let Nn := [i�n
i(I) and �n be an H1-negligibleBorel set whi
h 
ontains the non-di�erentiability points of Nn. Then de�ne an : 
! [�; �℄by an(x) :=8>>>><>>>>: � if x 2 �nmdd(
i)(t)j _
i(t)j if x = 
i(t) 2 Nn n�n for some i � n and some t 2 I� elsewhere. (29)It is easy to show that an is Borel measurable. Moreover, arguing as in the proof of Propo-sition 4.6, one 
an show that Æan(xi; yi) = d(xi; yi) for every i � n. Noti
e that Nn � Nn+115



and, up to repla
ing �n+1 with �n+1 [�n, we 
an always suppose that �n � �n+1. There-fore (an)n2N is a de
reasing sequen
e of metri
s. Let a(x) := infn2N an(x). Then, arguingas in Lemma 3.8, we get thatÆa(xi; yi) = limn!+1 Æan(xi; yi) = d(xi; yi)for every i 2 N. This means that Æa = d on a dense subset of 
� 
 and hen
e Æa 
oin
ideswith d by 
ontinuity, whi
h is the 
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