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Abstract

In this paper we study the relaxation of a class of functionals defined on distances
induced by isotropic Riemannian metrics on an open subset of RY. We prove that
isotropic Riemannian metrics are dense in Finsler ones and we show that the relaxed
functionals admit a specific integral representation.
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1 Introduction

In this paper we study an integral functional of the form
Fd) = [ Fo,a(e) da, M
Q

defined on the family 7 of distances d, induced by isotropic, continuous Riemannian metrics
through the formula

da(z,y) = inf {La(7) + 7 € Lin(10,1;9), 7(0) =2, 7(1) =y } @)

for every (z,y) € Q x Q, where the length functional L, is defined as follows

La(7) == / a(+() ()] dt. (3)

Here a varies on the family of positive continuous functions from  to the interval [a, (],
where o and 8 are fixed positive constants. Distances of this type have already been studied
in [6, 3] and, in a more geometric framework, in [8]. The set Z can be seen as a subspace
of the space of Finslerian distances D (see Section 2) endowed with the metrizable topology
given by the uniform convergence on compact subset of Q2 x Q. It has been proved in
[6] that the convergence of a sequence (d,)nen to d in this topology is equivalent to the
[-convergence of the associated length functionals Lg, to Lg with respect to the uniform
convergence of curves (see Section 2 for definitions). The main problem arising in our study
is that Z is not closed with respect to this topology. Indeed, one can build sequences of
continuous metrics (an)neny which develop an oscillatory behavior in such a way that the
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induced distances converge to an element d which do not belong to Z (see [1]). Therefore,
it is natural to consider the relaxzed functional of (1), namely

F(d) := inf{liminf F(d,) : dp —>d, (dp)nen C I}, (4)

defined for every d belonging to the closure of Z, where we have denoted by L, the con-
vergence with respect to the topology of D.

In this paper we prove that the space Z is dense in D and, under suitable assumptions
on the integrand F in (1), that the relaxed functional (4), which is therefore defined on the
whole D, has the following integral representation:

Fd) = / F(z, Aa(2)) dz, (5)

where Aq(z) := supj¢=; pa(z,§) and pq is the Finslerian metric associated to d by deriva-
tion (see Section 2).

We conclude this introduction with some considerations. It is clear by the definition that
the relaxed functional F is lower semicontinuous. Moreover, it can be shown that it is the
greatest among all lower semicontinuous ones which are bounded from above by F on Z (see
[4] for various results on this topic). Therefore, in order to prove our relaxation result, we
have to show first that the functional (5) is lower semicontinuous. The proof of this issue
is just a technical adaptation of the arguments described in [5]. To prove the maximality
of (5), we will approximate each d € D by means of a sequence of suitably chosen distances
d, € T, namely such that

limiup/QF(x,Adn(x))de/QF(x,Ad(ac)) dz.

Then, by a standard argument (see Section 4), the maximality of (5) follows.

Indeed, finding such an approximating sequence is a delicate matter. In fact, one should
define the Riemannian metrics a,, in such a way to have I-convergence of the relative length
functionals L,, to Ly, and this problem is not trivial even in the simplified situation of an
isotropic Riemannian metric ¢4, i.e. such that pq = b(z)|€| where b is a Borel function from
2 to [a, B]. Tt is clear, in fact, that this convergence strongly relies upon the convergence of
the approximating metrics on curves, which is much finer than convergence almost every-
where in 2. Moreover we do not have much information on the properties of the metric ¢g;
we only know it is Borel measurable and such that the associated length functional L, is
lower semicontinuous with respect to the uniform convergence of curves (see Section 2). In
the general case of a non-isotropic metric the situation is obviously more delicate.

The key idea of our proof is that it is sufficient to control the convergence of the approximat-
ing distances only on a fixed countable and dense subset of Q x 0 (Lemma 3.7). Therefore,
when we define the Riemannian metrics, we have only to control the value of the associated
distance d,, on the first n points of the countable, dense subset. This will be done by ap-
proximating the Finsler metric ¢4 along geodesics (or, more precisely, quasi-geodesics, see
(20)).

The problem of the density of (smooth) isotropic, Riemannian metrics in Finsler ones has
already been studied. The question was raised in [6], and partially answered in [3] under the
additional assumption that (4 is lower semicontinuous in the first variable. We remark that
our proof does not require any assumption on the Finsler metric and therefore completely
answers to the question. Indeed, as pointed out in [3], once we have the density result for
continuous and isotropic Riemannian metrics, the analogous result for smooth ones is easily
recovered via a regularization argument (see Remark 4.4).



We conclude the paper by showing that every Finsler distance d € D can indeed be seen as
generated by a suitable Borel measurable, isotropic Riemannian metric a : Q — [a, 8] (ac-
cording to definition (28), see Proposition 4.8). In other words, by allowing the isotropic met-
ric a to vary in a somehow “uncontrolled” way, one can recover all the possible anisotropies
of pg.

The paper is organized as follows: in Section 2 we recall the main notation used in the
sequel and some results on Finsler metrics, Section 3 contains some preliminary lemmas and
in Section 4 we prove our main results.

ACKNOWLEDGEMENTS.- The author wish to thank Giuseppe Buttazzo for having suggested
the problem and for several useful discussions on the subject.

2 Notation and preliminaries on Finsler metrics

We write here a list of symbols used throughout this paper.

0 an open subset of RV

SNt the unitary sphere of RV

B, (x) the open ball in RY of radius » centred in z
I the closed interval [0, 1]

LN the N—dimensional Lebesgue measure

HN the N —dimensional Hausdorff measure

|ul the Euclidean norm of the vector u € RY
XE the characteristic function of the set £

argmin(P) the set of minimizers of the problem (P)

In this paper the letter NV denotes an integer number greater or equal to 2. We will say
that a set w is well contained in 2 and we will write w CC  to mean that its closure @ is
contained in Q. With the word curve or path we will always indicate a Lipschitz function
from the interval I := [0,1] to an open subset Q2 of RV. Any curve v is always supposed
to be parametrized by constant speed, i.e. in such a way that |§(t)| is constant for £'-a.e.
t € I. We will say that a sequence of curves (y,)nen (uniformly) converges to a curve 7 to
mean that sup;c; [, (t) —v(t)| tends to zero as n goes to infinity. We will denote by L, the
family of curves v which join z to y, i.e. such that v(0) = z and (1) = y. We remark that
if a sequence of curves (Y, )nen C L,y is such that sup, fol |9(¢)|dt < 400 then, since they
are all parametrized by constant speed, we have that their first derivative is bounded from
above. Therefore, by applying Ascoli-Arzela theorem, we can find a curve v € £, , such
that a subsequence (v, )ien converges to . This argument will be widely used throughout
the paper with no further explanation.

The function F' : Q % [o, 3] — R appearing in the integrand of (1) is assumed to be
continuous and to fulfill the following conditions:

(i) the function F(z,-) is convex and nondecreasing for £V -a.e. = € Q;

(6)
(ii) o, F(z,B)dz < +oo.

We recall the notion of I'-convergence. Let (X, ) be a topological space satisfying the first
axiom of countability at the point z € X. A sequence of functionals F, : X — R is said to
I'-converge at x if

I —liminf F,,(z) =T — limsup F,(z),



where

{ [ —liminf F,(z) :=inf {liminf, F,(z,) : z, —z }
T — limsup Fy, () := inf {limsup,, F},(z,) : =, — 2z }.

Definition 2.1. A Borel function ¢ : @ x RN — [0, +00) is said to be a Finsler metric on
the open set Q C RV if the function ¢(z,-) is positively 1-homogeneous for every = €  and
convex for LN-a.e. z € Q.

Given a Finsler metric, we can define a distance d, on €2 through the formula

dy (2,y) :=inf{L, (v) | v € Lay }, (7)

where the Finslerian length functional L, is defined by
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A distance deriving from a Finsler metric through (7) is said to be of Finsler type. We will
say that a distance d is locally equivalent to the Euclidean one if, for every = € 2, there
exists an open neighborhood U, and some positive constants ¢,, C, such that ¢c,|z — y| <
d(z,y) < Cplz —y| for every y € U,. We will say that a distance function is of geodesic type
if it satisfies the following identity:

d(z,y) = inf {Ld('y) | v € L’z,y} for every (z,y) € 2 x Q, (8)

where Ly (7) denotes the classical d-length of v, obtained as the supremum of the d-lengths
of inscribed polygonal curves:

Ld(’y) 1= sup { Zd(’Y(ti)a’Y(ti—H)) 0=t <thi <. <t, =1, 1€ N} . (9)

It can be easily shown by the definition that

Proposition 2.2. The length functional Ly is lower semicontinuous with respect to the
uniform convergence of paths, namely if (vn)nen converges to v then

La(7) < liminf Lg(yy).

If the distance d is locally equivalent to the Euclidean one, then it can be proved (cf.
[8]) that the length functional L; admits the integral representation

1
L) = [ par @) 30)
0
for every curve v, where @4 is the Finsler metric associated to d by derivation, namely

0 (z,€) := lim sup d(z,z +1t€)
t—0+ t

(z,6) € A x RV .

Denote by dq(z,y) the Euclidean geodesic distance in 2, that is do := d, according to
(2), with a identically equal to 1. We remark that dq locally coincides with the Euclidean
distance. We fix two positive constants a, 8 with § > a and we set

M = {p Finsler metric on Q : a|¢]| < ¢ (z,€) < B¢}

Then we define the family D of distances on Q generated by the metrics M, namely D :=
{d, | ¢ € M }. Obviously the set Z, made up by distances d, defined by (2) with a : Q@ —
[, B] continuous, is trivially included in D identifying a(z) with the metric a(z)|¢]. Tt is
also evident that adqg < d < Bdq for every d € D, so such distances are locally equivalent
to the Euclidean one. Moreover one can easily show the following result.



Proposition 2.3. Let d := d, for some ¢ € M. Then Ly(v) < Ly(7y) for every curve .
In particular, d is a distance of geodesic type according to definition (8).

Remark 2.4. The inequality in the previous proposition may be strict. For example, take
N :=[-1,1]x[-1,1],T := {0} x[-1,1] and a(x) := Xo(x)+ X (z). Thend,(z,y) = |z—y|. If
now we take y(t) := (0, —1/2)(1—t)+ (0, 1/2)t, it is easily seen that Ly, (7) =1 < 2 = L, (7).

We endow D with the topology given by the uniform convergence on compact subset of

Q x Q. We will write d, Py d to mean that the sequence (dp)nen C D converges to d € D
with respect to this topology. It has been proved [6, Theorem 3.1] that this convergence is
equivalent to the I'-convergence of the relative length functionals with respect to the uniform
convergence of paths. Moreover, we have the following result (compare to [5, Proposition 4]
and [6, Theorem 3.1]):

Proposition 2.5. Let Q) be an open subset of RN such that dqo(z,y) < Cp|lz — y| for every
x and y in QN B,.(0) and every r > 0, where C,. is some positive constant which depends on
r. Then D is a metrizable compact space.

Throughout this paper we will always work with sets {2 which satisfy the condition stated
in the proposition above. Therefore we will always assume that D is compact. In particular,
this holds whenever Q has a locally Lipschitz boundary.

Given a distance d € D, we define for every z € ()

Ag(z) == El'l:pl wa(z,8), (10)

which represents, with analogy to the Riemannian case p4(z,£) = B(z)¢ - € with B(z) a
symmetric and positive definite matrix, the largest “eigenvalue” of p4(z, ) at the point z. We
notice that Ag4(z) is a Lebesgue measurable function. Indeed, if (£,)nen is a dense sequence
in SV~1, we have that Ag4(x) coincides with the Borel measurable function sup,, p4(z,&,) on
O\ E, where E is the set of points where ¢4(z,-) is not continuous. We know that yp4(z,-)
is convex for almost every x by definition of Finsler metric, therefore E is £V -negligible and
the claim follows.

3 Preliminary results

In this section we prepare the tools which will be used in the proof of our relaxation results.

We recall that the function F': Q x [, 8] — R is continuous and fulfills conditions (6).
We have

Lemma 3.1. Let (¢n),cy C M such that dy, 2yd for some d € D. Then, for every
bounded Borel set w CC Q and every € € SN1, we have

n— o0

/ F(z,p04(x,8))dz < liminf/ F(z,0n(x,8))dz .

Proof : Let w be a bounded Borel set well contained in 2. Choose a bounded open set
A CC Q that contains w. Arguing as in the proof of [5, Proposition 9], for every fixed
¢ € SV—1it is possible to find a subsequence of (¢n)pen and a sequence of positive numbers
t, — 0 such that, for a.e. z € A,

(11)

F(%‘P(%f)) = nll_{I;QXAn (x)F <x,w> ,



where A, := {z € A|dist(z,04) > t,}. Now, integrating (11) over w and applying the
dominated convergence theorem, we get:

/wF(ac p(z,€))dz = lim /XA ( M) dz. (12)

n— o0 n

Since d,, (z,2 + tp€) is less than or equal to the (Finslerian) length of the straight line
segment joining x and z + t,£, we have

1
Ay, (0,7 4+ tnf) < / o (2 + $tnE, £n€) ds
1]

By the monotonicity and convexity of the function F(z,-) for a.e. x we get, by using Jensen
inequality, that for a.e. z € A,

7 <m, dy, (z,2 + t,€)

n

) </ (o (1 + stat, )ds. (13)

Combining (12) and (13), we obtain

/F (z,p(z,8))dz <11m1nf/ XA, nwl / F(z,0n (x + stp€, &))ds de

n—oo

= lim inf/0 /QXAnmw (z — stp€) Fx — stp&, on (z,€))dzds

=liminf | F(z,¢n (z,§))dz
n—oo w

O

The following two lemmas are analogous to [5, Lemmal0, Lemma 11] and may be proved in
the same way, up to some technical adaptations.

Lemma 3.2. Let ¢ € M be a continuous Finsler metric. Then, for every bounded open set
A CC Q and for every e > 0, there exists 6 > 0 such that

/ F(z,Ap(x))dz < sup / [F (z,0(x,€)) + €] dx for alli € ZV,
DINA |¢]=1/D¢nA
where we have set D! := QN (i +[-6,6)").

Lemma 3.3. Let ¢ € M such that ¢(x,-) is conver for every x € Q. Then for every
bounded open set A CC Q and for every € > 0 there exists a compact set K. C A such that
LN(A\ K.) < ¢ and ¢ is continuous on K. x RV.

By using the previous lemmas we can prove the following

Proposition 3.4. Let o € M. Assume that, for a sequence (un)
measures on ), the following property holds:

nen Of monnegative Borel

sup / F(z,0(z,8))dz < lirginf n (W) for every Borel set w CC Q .
l€l=1Jw nree

Then

/QF (z,Ap(x))da < linrggf tn (). (14)



Proof : Let (£;)en be a sequence of bounded open sets well contained in Q such that
Q C Yy and Q = Uien . We first remark that it is sufficient to prove that (14) holds
for Q := () for every [ € N. Then, the claim is easily obtained by adapting the proof given
in [5, Proposition 12] and by using Lemmas 3.1, 3.2 and 3.3. O

Next, we show some results on Finsler metrics. We start by the following
Proposition 3.5. Let ¢ € M and d :=d,. Then

(i) ea(z,€) < @(x,€) for a.e. © € Q and for every & € RY. In particular Ay(z) <
SUP|g|=1 o(x, &) for a.e. € Q;

(i1) if p(x,&) := a(z)|]| with a : Q = [«, B8] lower semicontinuous, then pq(x,&) > a(z)|¢|
for every (z,€) € Q x RV In particular a(z) = Ay(z) for a.e. x € Q.

Proof : Let us fix a £ € SV~!. For every z € Q let us define the curve v, (t) := z + t£.
Then by Proposition 2.3 we have that

La(7a) = / pale,€) dt < / (s €) dt = Ly (7).

Therefore we deduce that pg(z,€) < ¢(z,€) for a.e. © € Q. Then we can take a dense
sequence (&, )nen in SV! and repeat the argument above for each &,. Recalling that the
functions p4(z,-) and ¢(x, ) are continuous and 1-homogeneous for a.e. x € 2, we eventually
get, by the density of (£,)nen, that @q(z, &) < @(x,€) for a.e. x € Q and for every £ € RV,
In particular we get

Aqg(z) < sup ¢(z,§) a.e. in Q. (15)
l€l=1
Let us now take ¢(z,&) := a(z)|§| with a lower semicontinuous. Then we have, by the

lower semicontinuity, that a(z) = sup, (infp, ;) a). Therefore for every fixed z € Q2 and
for every € > 0 there exists r. > 0 such that B, _(z) C Q and a(y) > a(z) — € for every
y € By (7). Let us fix a £ € SV ! and take 0 < t < ar./(283). Choose a d-minimizing
sequence (Yn)nen C Lg pt1e such that Ly (v,) < d(z,z + t€) + ar. /2 for every n. Then the
curves 7, lie within B,._(z). In fact for every n and for every s < 1:

s
alyn(s) — | S/ a(y)|ynldr < d(z, 2 +t&) + ar. /2 < Bda(z, 7 +t) + ar. /2 < ar,
0

where we have used the fact that do(z,y) = |z —y| if y € B,_(x). Then we have for every n

La(7n) == / a(y) il dr > (a(z) — ) / Bl dr > (a(z) — o)t

and letting n go to infinity we obtain

d(z,z + t)

; >a(x) —e. (16)

By passing to the limsup in (16) as t — 0 and since e > 0, # € Q and ¢ € SV~ were
arbitrary we obtain

va(z, &) > a(x) for every (z,£) € Q@ x SN—! (17)

and the claim follows by the 1-homogeneity of ¢4(z,-). In particular, by taking the sup of
the left-hand side of (17) over all £ € SN~ and by using (15) we get that Ag(z) = a(x) for
a.e. ¢ € (. O



Remark 3.6. If a and b are two continuous isotropic metrics which give rise to the same
distance function d through (2), then a(z) = b(z) for every z in Q. In fact, by point (ii) of
the stated lemma, we have that the previous equality holds almost everywhere, and therefore
everywhere by the continuity of the metrics. In particular, this shows that the functional
(1) is well definite.

The key idea used in the proof of the density result is stated in the following

Lemma 3.7. Let (dy,),cy be a sequence contained in D which converges pointwise to some

d € D on a dense subset of Q2 x Q. Then d, 2 4.

Proof : By the compactness of D, we already know that there is a subsequence (dy, ) ey

such that d,, L2, § for some § € D. By the pointwise convergence we get that §(z,y) =
d(z,y) on a dense subset of  x  and therefore ¢ coincides with d since they are both
continuous functions. If the whole sequence did not converge uniformly (on compact subset
of 2 x Q) to d, by the compactness of D there would exists a subsequence which converges
to some § € D with § # d. By arguing as above, this would lead to a contradiction. O

The next result shows that the monotone convergence of metrics implies the convergence of
the induced distances.

Lemma 3.8. Let (p,)nen be a sequence in M such that for every (z,€) € QxRN ¢, (,€)
converge increasingly (resp. decreasingly) to p(x,&) for some ¢ € M. Then d,, 2, dy.

Proof : By Lemma 3.7 it is sufficient to prove that (d,, )nen converges pointwise to d,,.
We start by considering the case of an increasing sequence of metrics. By the monotonicity
of ¢,, we obviously have that L,(v) > Ly, (v) > Ly, _, () for every curve v and therefore
(dy, (z,y))nen is an increasing sequence and dy(z,y) > sup,, d,, (z,y) for every (z,y) €
Q x Q. To prove the reverse inequality, let us take a sequence of curves (yn)nen C Lz,
such that Ly, (7v,) < dy, (z,y) + 1/n. Since the functionals L, are equi-coercive (in fact
L, (v) > ozfol |¥|dt for every n), we may find a subsequence (7,,)ien which converges
uniformly to some curve y € £, ,. Now, by [7, Remark 5.5], we know that the functionals
Ly, , T-converge to L, with respect to the uniform convergence of path and therefore we
have

dy(z,y) < Ly(y) <lminfL,,  (vn;) < liminfd,, (z,y) =supd,, (z,y).

i——+o00 i i——+o00 i

Since (z,y) € Q x Q was arbitrary the claim follows.

The proof in the case of a decreasing sequence of metrics is even simpler. In fact, by
monotonicity we get d,(z,y) < inf, d,, (z,y) for every (z,y) € Q& x Q. To show the reverse
inequality, take a curve v € L;,. By the monotone convergence theorem and by the
definition of d,,, (z,y) we have

LLP (7) = lgf Llpn (7) Z lgf dtpn (1‘, y)7

and the claim easily follows by taking the infimum over all curves in £, ,. O

We end this section with the proof of two lemmas which will be useful in the sequel.

Lemma 3.9. Let {7'|y' € Ly, 4., i <n} be a finite collection of curves such that

d(zi,yi) < La(v') < d(zs, ;) + % (18)

for some fized points (x;,y;) € Q x Q and for some n € N. Then it is possible to find a
family of curves {7 |5 € Ly, 4:, i < n} still satisfying (18) and such that



(i) 7' is injective for every i < mn;

(i) ¥ (I) N A/ (I) is a (possibly void) disjoint finite union of closed arcs for every 1 <i <
j<n.

Proof : Let N be a 1-rectifiable closed set such that N D Uignfyi. First we remark that
for every i < n the set

Ri:= argmin{Ld(’}/) |7 € Ezi,yi77(I) C N}

is non-void. Indeed, the class of curves on which we minimize L, is non-void, as it contains
7%, and closed with respect to the uniform convergence of curves, as N is closed, therefore
it contains an accumulation point 4% of a minimizing sequence. Such a curve is of minimal
d-length by the lower semicontinuity of Ly and so it belongs to R;. Moreover, it is injective
and satisfies (18) by minimality.

The proof of the lemma is by induction on n. For n = 1 the claim is satisfied by choosing a
4" which belongs to R;. Let us then suppose the claim satisfied up to n—1 and let us prove
it for n. By induction we may find curves #* € R; for i < n — 1 such to satisfy the claim.
Let us choose a curve o in R,,. For every j <n —1let us set t; := min{t € I |o(t) € /(1) }
and T} := max{t € I |o(t) € ¥9(I)}. Up to reordering the curves 4/, we can suppose that
t1 = min{t;|j < n —1}. Then we define 1 € £,, 4, to be the curve obtained by moving
from 0(0) to o(t;) along o, from o(t1) to o(Ty) along 41 and from o(71) to o(1) along
o again. Remark that, by minimality, 4! is a path which connects o(t;) to o(T}) in the
shortest way among all those contained in N and so we have not increased the length, i.e.
Ly4(m) < Lg(o) and 7 € Ry. Moreover 71 ([0, T1]) N %;(I) is a disjoint finite union of closed
arcs for every 1 <4 <n —1. Then we set o := 7 |[p;,1] and we repeat the argument above
to obtain a 75 : [T1,1] — N. By iterating this procedure we eventually find a finite number
of curves {7, |1 < h < M} for some M < n. Then we define

T1 (t) if t € [O,Tl]
AMt) =< Th(t)  ift€[Tho1,Tp] and 1< h< M
™ (t) ift e [Thvo,1].

By what previously observed, we have that 4™ still belongs to R,, and is therefore injective
by minimality. Moreover, it is such that 4"(I)N4*(I) is a disjoint finite union of closed arcs
for every i < mn — 1 by construction. The claim is thus proved. O

Lemma 3.10. Let v be an injective curve, I' := v((0,1)) C Q and a : Q@ — [a, 5] a Borel
function. Then there exists a sequence of continuous functions op, : I' = [a, §] such that
or(z) converge to a(zx) for H'-a.e. x € T. Moreover, for every € > 0 there exists a Borel
subset B. C T such that ’Hl(I‘ \ B:) < € and o}, converge uniformly to a on B:..

Proof : The function aoy : (0,1) — [a, 3] is Borel measurable, therefore there exists a
sequence (fr)ren of continuous functions fi : (0,1) — [a, f] such that fi(f) converges to
aoy(t) for a.e. ¢t € (0,1). Moreover, by Severini-Egoroff’s theorem [9, Section 1.2, Theorem
3], for every £ > 0 there exist an infinitesimal sequence (d)ren and a Borel set E. such that
HY((0,1) \ E.) < € and |fi(t) — aoy(t)| < 6 for every t € E.. The claim then follows by
setting o (7) := fr(y 1(z)) and B. := y(E.). O

4 Main results

Our main result is stated as follows.



Theorem 4.1. Let F be the functional defined on T by (1), where F : Q x [a, 8] = R is
continuous and satisfies conditions (6). Then its relazed functional (4) has the following
integral representation:

F(d) = /Q Pz, Ag()) dz (19)

for all d € D.

The proof of the theorem above is based on the following two results which we state sepa-
rately.

Theorem 4.2. Ifd, i)d, then lim+inf F(z,Ag, (x))dx > / F(z,A4(z)) d.
Theorem 4.3. The family T of distances induced by continuous and isotropic Riemannian
metrics is dense in D. Moreover, for every d € D we can choose a sequence (dp)nen C T

such that d, i) d and

limsup/ F(z,Ag, (z))dx < / F(z,Ay(x)) dz.
n—+oo JQ Q

Remark 4.4. The class of distances induced by smooth isotropic Riemannian metrics is
dense in Z. Therefore, by the theorem just stated, smooth isotropic Riemannian metrics are
dense in the class of Finsler metrics. In fact, let us take a distance d in Z. Then d = d,
for some continuous metric a : Q@ — [a, 3]. We may extend a to the whole R" by setting
a identically equal to « outside 2. Then, by taking a sequence of convolution kernels p,,,
we define the sequence of smooth isotropic metrics a,, : @ — [a, ] by regularization, i.e.
an(z) := pp *a(z), and we call d,, the induced distances. Since the functions a,, converge to
a uniformly on compact subset of Q0 x 2, it can be easily shown that the length functionals
L,, T-converge to L, with respect to the uniform convergence of curves. Then, by [6,

Theorem 3.1], we have that d,, 2y d (this could also have been proved directly by using the
equi-coercivity of the length functionals to show that the above convergence of distances is
pointwise and then applying Lemma 3.7).

Once Theorem 4.2 and Theorem 4.3 are proved, the proof of Theorem 4.1 will trivially
follows. In fact, Theorem 4.2 gives that the functional (19) is lower semicontinuous with
respect to the uniform convergence of distances, and Theorem 4.3 implies it is the greatest
lower semicontinuous functional defined on D which is bounded from above by F on Z. In
fact, let G be another candidate and let d € D. Choose a sequence (dp)neny C Z as in the
statement of Theorem 4.3. We have

G(d) <liminf G(d,) < liminf F(d,) < limsup F(d,) < / F(z,Aq(x))dez,
Q

n——+oo n—+oo n——+o00

hence the claim. We remark that by Proposition 3.5 the functional (19) actually coincides
with F on .

Let us then start by proving Theorem 4.2.

Proof of Theorem 4.2: By applying Lemma 3.1 with ¢, := ¢g4, , we obtain

sup / F (z,p4(z,8))dz < liminf [ F(z,Aq4, (z))dz.

‘5‘21 n—o0

The claim then follows by applying Proposition 3.4 with u,(w) := [ F (2,Aq, (x))dz. O
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Remark 4.5. The proof above still works for slightly more general functionals. Indeed, it
is sufficient that there exists a sequence of continuous functions Fy, : @ x [a, 8] — R which
satisfy conditions (6) and such that F(z,&) = supj, Fi(z,¢) for LN-a.e. x € Q and for every
¢ € RN. In fact, one can apply the argument above to each F}, to get

/ Fy (z,Aq(z)) dz < lim inf/ F (z,Aq, (z)) dz,

n—oo

and the claim immediately follows by taking the supremum over k of the left-hand side term
and by the monotone convergence theorem.

We now come to the proof of Theorem 4.3. The proof is essentially divided in two steps: first,
we approximate a given d € D with distances induced by a sequence of Borel measurable
and isotropic Riemannian metrics, then we approximate each distance of the sequence by
means of distances in 7.

Proposition 4.6. Let d € D. Then there exists a sequence of Borel measurable isotropic
metrics a, : Q@ = [a, B] such that

(i) do, 2 d;
(ii) an(z) = Ag(z) for a.e. x € Q.

Proof : By Lemma 3.7, it is sufficient to define the functions a, in such a way that
the generated distances d,, converges pointwise to d on a dense subset of Q x Q. Let us
start then by setting S := QY N Q. Obviously S x S is dense in Q x Q and countable,
so we write S x S := {(x;,y;)|¢ € N}. For each (z;,y;) we take a d-minimizing sequence
(Y& nen C Lz, y:, i.e. such that

. 1
d(zi,y;) < La(y,) < d(zi,y:) + -~ (20)

By Lemma 3.9, the curves % can be chosen in such a way to satisfy conditions (i) and (ii)
of the mentioned lemma (this assumption is not really needed here, but will be important in
the proof of Theorem 4.3). By condition (ii), each non-empty set v (I) N~ () is a disjoint
finite union of closed arcs. Let us denote by T}, the finite set given by the extreme points of
such arcs for every 1 < i < j <n and set N,, := Uignfy,’;(l). Let X, be a Borel H'-negligible
subset of N,, which contains the points where the 1-rectifiable set IV,, is not differentiable
(this is possible by the regularity of the measure #' and by the differentiability property
of rectifiable sets [10, Theorem 1.6, Theorems 3.8 and 3.14]). Then we define the function
an : = [, ] by

Aq(z) ifxe Q\ N,
an(z) :=¢ « ifeeX,uUT, (21)
va(z, &) fzeN,\ (E,UT,)

where &, is the unitary tangent to IV,, at the point z. It is not difficult to prove that a, is
Borel-measurable. Moreover it is clear that a,, satisfies point (ii) of the Proposition.

We remark that, by [8, Corollary 2.7], we have that p,(z, &) = wa(z, —E&;) for H!-a.e.
x € N,. By possibly enlarging the set ¥,, we may suppose that this holds everywhere on
N, \ . Moreover, if = v?(t) and 4 is differentiable in ¢, we have that 4/*(¢) is parallel
to & and therefore ©q(v]'(t), 37 () = @a (7' (1), &)1V ()] = an (V] (£)) 137 (£)]-
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Let d,, be the distances generated by such functions a,,. In order to prove point (i), we
show that the distances d,, converge pointwise to d on S x S. We claim that for every ¢ <n
we have

1
d(zi,y:) < da, (23, y:) < d(xs,y:) + o

Let us fix an ¢ < n and let us prove the second inequality. By the above remark and by (20)
we have

1 1
dan (mlayl) S / an(72)|7n| dt = / god(f)/n’f)/n) dt S d(wlayl) + E
0 0

To prove the first inequality, choose a curve o € L, ,, and for every i < n set I; := {t €
I'lo(t) € vi(I)} and Iy := I'\ Uj<nI;. We remark that the vector () is parallel to &, a.e.
on each I; and so a,(0)|6| = pa(o,d) a.e. on I;. Therefore we have

/01 an(o)|e|dt = i/l an(a)|é|dt_}_/10 an(0)|o| dt

Z/ @d(aad) dt+/ @d(aaol-) dt Zd(wlayl)a
=171 To

L, (o)

v

where we have used the fact that a,(0)|6] > @4(0,d) on Iy. By passing to the infimum over
all possible curves o € L, ,, we get the claim. O

Proof of Theorem 4.3. The proof is organized in two steps.

Step 1. We first remark that the closure of Z contains the family of distances generated
by lower semicontinuous isotropic Riemannian metrics. In fact, let b: Q — [a, 5] be a lower
semicontinuous metric. It is well known that b(xz) = sup,, ¢y @n(2) for suitable continuous
functions @, (and we may as well suppose that @ < a, < ( by possibly replacing the
function a, with a, V «). Setting a, () := sup;«,, (), we have that d,, 2y d, by Lemma
3.8. Moreover, by Proposition 3.5 we have that Ag, (z) = b(z) and Ay, (z) = a,(z) almost
everywhere on () and therefore, by the monotone convergence, we get that

limnsup/QF(x,Adan(x))dx:/QF(ac,Ab(ac))dac

To prove the theorem, it is then sufficient to find a sequence of lower semicontinuous metrics

n : Q@ = [a, B] such that the generated distances dj,, satisfy the claim of the theorem. In-
deed, by combining the idea just described with a diagonal argument, the conclusion would
follow at once.

Step 2. To get the desired approximation of the distance d € D via lower semicontinuous
isotropic metrics, it is enough to prove that, for every fixed n € N there exists a sequence of
lower semicontinuous isotropic metrics by, : Q — [«, 8] such that

1
(i) d(zi,y:) <limsupdy, (v, y:) < d(wi,y:) + -~ for every i < n;

k—+o00

hmsup/Favb/c dx</ann

k—+o0

12



where a,, are the Borel isotropic metrics built in the proof of Proposition 4.6.

In fact the desired sequence of lower semicontinuous metrics is then obtained via a diagonal
argument and taking into account that a,(x) = Ag(z) almost everywhere on Q by Proposi-
tion 4.6.

Keeping the notation used in the proof of Proposition 4.6, we observe that the set N,,\T),
is a finite, disjoint union of open arcs. Therefore, by applying Lemma 3.10 to each arc, we
can find a sequence of continuous functions oy : Ny, \ T}, — [a, 3] which converge to a,, H!-
a.e. on N, \T,. Let us set Ay, := {z € Q|dist(z, N,,) < 1/k}. Let (Qx)ren be a sequence of
bounded open sets well contained in Q such that Q; C Q41 and Q = UkeN Q. By Lusin’s
theorem we may find a sequence of closed set Ky C Q. \ Ay such that a |k, is continuous
and L£"((Q \ Ar) \ Ki) < 1/k. Then we define by, : @ — [a, 5] by

op(z) ifzeN,\Ty
« ifx €Ty,
an(z) ifzxeKy

B elsewhere.

(22)

Notice that by is lower semicontinuous. Moreover we have

lim sup/ F(z,bg(z)) dz = lim sup ( F(z,an(x))dz + /
k—+o00 JQ k—+4o00 K, Q\ K},

F(z,p) dac) . (23)

Recalling that F(z, ) is summable over  (condition (ii) of (6)), we have that the second
integral in the right-hand side of (23) goes to zero. In fact

[ Fepa= [ Fepdes [ Fapa, (24)
Q\ K}, O\ Qe \ K,

and the first and second term of the right-hand side of (24) go to zero, respectively by the
dominated convergence theorem and the absolute continuity of the integral. Therefore

limsup/QF(x,bk(ac)) dacg/QF(x,an(ac)) dz,

k—+o00

so point (ii) of the claim is satisfied.
Let us show now that (i) holds. We start by proving the second inequality. For i < n we
have by definition

1
b, (21, 33) < Lo, (4F) = / ok (YR dt,
0

therefore by the dominated convergence theorem we get

IN

1 1
lim sup dy, (2, ;) limsup/ ok(%”)lwldt=/ an(Yi)3i'| dt
0 0

k—+o00 k—+o00

1
- / paly? AT dE < d(zi,ys) +
0

S|
—~~
[\)
ot
~

To prove the first inequality let us take for every k € N a curve ;, € L, ,; such that

1

di(zi,yi) < Ly, (k) < di(zi,:) + % (26)
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Once again, we remark that, by Lemma 3.9, it is not restrictive to suppose that such curves
are injective. Since « [} [x|dt < Ly, (&), by (26) and (25) we get that lim sup,, [; || dt <
+00. Let us choose an ¢ > 0. By applying Lemma 3.10 to each open arc of N, \ Tj,
we can find a Borel set B. C N, \ T,, and an infinitesimal sequence of positive numbers
(0k)ken such that HY (N, \ B:) < € and |0y (z) — an(x)| < 8 for every # € B.. Let us set
I, .= {t € I|v(t) € N, \ Be}. Then bi(vi) > an(yr) — 0k a.e. on I\ I;,. Let us write

Ly, (vi) = [ br(vw)|Fe|dt +/ br (k) [yx|dt.

I I\

We remark that, as yx(I) C Ny \ B: for every k € N, by the Area-formula we have

e dt = H' (v (Ix)) < H'(Ny \ B:) <e.
Iy,

Taking into account this remark we get

/ be () [eldt = / an () |t + / (bk () — an (30) [t

I

Y%

/ an(r) 3kl — (8 — a)e.

Iy

Then we have

1
Ly, () > /anmnmdt—ak/ el dt — (8 — a)e
0 I\I}
1
> do, (20 y1) — 6 / il dt — (8 — a)e
0

and therefore, as fol |9% | dt goes to zero, we obtain

lim sup dbk (xlayl) > lim sup Lbk (’Yk) > dan (xlayl) - (B - a)s.

k—+o00 k—+o00

The claim then follows since £ was arbitrary. O

Remark 4.7. It should be noticed that the proof of Theorem 4.3 holds under very general
assumptions on the function F', namely it is sufficient to take an F’ which is Borel measurable
and satisfies assumption (ii) of (6), and such that the function F(z,-) is non-decreasing for
LN-a.e. x € Q. This consideration, together with Remark 4.5, enables us to conclude that
our relaxation result, namely Theorem 4.1, holds under the following milder conditions on
F:Qx[a,f] = R

(i) there exist a sequence of continuous functions Fy, : Q X [, 8] — R satisfying conditions
(6) and such that F(z,¢) = sup Fi(z,&) for LN-a.e. x € Q, for every £ € RV,
keN

(i) Jo F(z,B)dz < +oo.

With a slight modification of the argument used in the proof of Proposition 4.6 we can
prove the following result.
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Proposition 4.8. Let d € D. Then there erists a Borel function a : Q — [, 8] such that,
for every (z,y) € Q x Q,

ey =int { [ aO)501dt : 5 € Lip(0, 15, 7(0) =2 1) = }.

In particular, if Q := RN, for every d € D there exists a Borel measurable, isotropic Rie-
mannian metric a : RN — [a, B] such that d = d, according to definition (2).

Proof : Let us first remark that one can think the distance d € D to be defined on
Q x Q by extending it continuously up to the boundary. Therefore the d-length of every
path 7 : I — Q is defined, according to definition (9). Let us define the metric derivative of
the path ~ at the point ¢t € I as

a0 = tig 1A DA

(27)

It is well known (see [2] for instance) that the limit in (27) exists for £!-a.e. t € I and that

La(y) = / mdg(y)(t) dt.

Notice also that, if v(t) € €, then mdy(y)(t) = wa(y(t),4(t)), as one can easily show
comparing the definitions of ¢4 and md, and recalling that locally a|z — y| < d(z,y) <
B|z — y|. Moreover, we observe that a Borel function a : Q — [a, 3] induces a distance d,
on Q through the formula

a(m,y) == inf{/o a(y(t) ¥ ()dt = v € Lip([0,1];Q), (0) =z, v(1) =y } (28)
for every (z,y) € Q x Q.

Comparing the definition of d, with the one of d, given in (2), we see that the main
difference relies upon the fact that the curves on which we minimize the length L, are now
allowed to lye in the closure of 2, therefore §, depends also from the values assumed by
a on the boundary of Q. In particular, we remark that in general d,(z,y) < d4(z,y) for
(z,y) € Q x Q, and this inequality may be strict due to the fact that a is not continuous.
For instance, take Q := (—=1,1) x (=1,1) and a(z) := Xg(z) + Xq(z). One can easily see
that points near the boundary of € are closer with respect to d, since also the boundary of
2 can be used to connect points in definition (28).

Let us now set S := Q¥ N Q and write S x S = {(z;,y;)|i € N}. By the lower
semicontinuity of Ly, we have that for every i € N there exists a curve 7; : I — Q such
that Lg(v;) = d(z;,y:) (just take for ; an accumulation point of a d-minimizing sequence
of curves in Q which connect  and y). Let N, := Ui<nyi(I) and I, be an H!'-negligible
Borel set which contains the non-differentiability points of N,,. Then define a,, : Q@ — [a, 3]
by

« if zeX,
an(x) := % if z = v;(t) € N, \ By, for some i <n and some ¢t € T (29)
B elsewhere.

It is easy to show that a, is Borel measurable. Moreover, arguing as in the proof of Propo-
sition 4.6, one can show that d,, (x;,y;) = d(z;,y;) for every i < n. Notice that N,, C Np41
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and, up to replacing ¥, 11 with ¥, .1 UX,,, we can always suppose that ¥,, C ¥,,+1. There-
fore (an)nen is a decreasing sequence of metrics. Let a(z) := inf,eyan(z). Then, arguing
as in Lemma 3.8, we get that

do(zi,yi) = ngr}rloo ban (i, yi) = d(zs,y;)

for every i € N. This means that §, = d on a dense subset of @ x Q and hence §, coincides
with d by continuity, which is the claim. O
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